1,037 research outputs found

    Space station structures and dynamics test program

    Get PDF
    The design, construction, and operation of a low-Earth orbit space station poses challenges for development and implementation of technology. One specific challenge is the development of a dynamics test program for defining the space station design requirements, and identifying and characterizing phenomena affecting the space station's design and development. The test proposal, as outlined, is a comprehensive structural dynamics program to be launched in support of the space station (SS). Development of a parametric data base and verification of the mathematical models and analytical analysis tools necessary for engineering support of the station's design, construction, and operation provide the impetus for the dynamics test program. The four test phases planned are discussed: testing of SS applicable structural concepts; testing of SS prototypes; testing of actual SS structural hardware; and on-orbit testing of SS construction

    Brain neurons as quantum computers: {\it in vivo} support of background physics

    Full text link
    The question: whether quantum coherent states can sustain decoherence, heating and dissipation over time scales comparable to the dynamical timescales of the brain neurons, is actively discussed in the last years. Positive answer on this question is crucial, in particular, for consideration of brain neurons as quantum computers. This discussion was mainly based on theoretical arguments. In present paper nonlinear statistical properties of the Ventral Tegmental Area (VTA) of genetically depressive limbic brain are studied {\it in vivo} on the Flinders Sensitive Line of rats (FSL). VTA plays a key role in generation of pleasure and in development of psychological drug addiction. We found that the FSL VTA (dopaminergic) neuron signals exhibit multifractal properties for interspike frequencies on the scales where healthy VTA dopaminergic neurons exhibit bursting activity. For high moments the observed multifractal (generalized dimensions) spectrum coincides with the generalized dimensions spectrum calculated for a spectral measure of a {\it quantum} system (so-called kicked Harper model, actively used as a model of quantum chaos). This observation can be considered as a first experimental ({\it in vivo}) indication in the favour of the quantum (at least partially) nature of the brain neurons activity

    The role of octadecanoids and functional mimics in soybean defense responses

    Get PDF
    Oxylipins of the jasmonate pathway and synthetic functional analogs have been analyzed for their elicitor like activities in an assay based on the induced accumulation of glyceollins, the phytoalexins of soybean (Glycine max L.), in cell suspension cultures of this plant. Jasmonic acid (JA) and its methyl ester showed weak phytoalexininducing activity when compared to an early jasmonate biosynthetic precursor, 12-oxophytodienoic acid (OPDA), as well as to the bacterial phytotoxin coronatine and certain 6-substituted indanoylLisoleucine methyl esters, which all were highly active. Interestingly, different octadecanoids and indanoyl conjugates induced the accumulation of transcripts of various defenserelated genes to different degrees, indicating distinct induction competencies. Therefore, these signaling compounds and mimics were further analyzed for their effects on signal transduction elements, such as the transient enhancement of the cytosolic Ca2+ concentration and MAP kinase activation, which are known to be initiated by a soybean pathogenderived {[}beta]glucan elicitor. In contrast to the {[}beta]glucan elicitor, none of the other compounds tested triggered these early signaling elements. Moreover, endogenous levels of OPDA and JA in soybean cells were shown to be unaffected after treatment with {[}beta]glucans. Thus, OPDA and JA, which are functionally mimicked by coronatine and a variety of 6-substituted derivatives of indanoylLisoleucine methyl ester, represent highly efficient signaling compounds of a lipidbased pathway not deployed in the {[}beta]glucan elicitorinitiated signal transduction

    Differential systems associated with tableaux over Lie algebras

    Full text link
    We give an account of the construction of exterior differential systems based on the notion of tableaux over Lie algebras as developed in [Comm. Anal. Geom 14 (2006), 475-496; math.DG/0412169]. The definition of a tableau over a Lie algebra is revisited and extended in the light of the formalism of the Spencer cohomology; the question of involutiveness for the associated systems and their prolongations is addressed; examples are discussed.Comment: 16 pages; to appear in: "Symmetries and Overdetermined Systems of Partial Differential Equations" (M. Eastwood and W. Miller, Jr., eds.), IMA Volumes in Mathematics and Its Applications, Springer-Verlag, New Yor

    Hamiltonian flows on null curves

    Full text link
    The local motion of a null curve in Minkowski 3-space induces an evolution equation for its Lorentz invariant curvature. Special motions are constructed whose induced evolution equations are the members of the KdV hierarchy. The null curves which move under the KdV flow without changing shape are proven to be the trajectories of a certain particle model on null curves described by a Lagrangian linear in the curvature. In addition, it is shown that the curvature of a null curve which evolves by similarities can be computed in terms of the solutions of the second Painlev\'e equation.Comment: 14 pages, v2: final version; minor changes in the expositio

    Na+,K+-ATPase of gastric cells A target of Helicobacter pylori cytotoxic activity

    Get PDF
    AbstractThe present study shows a direct impairing action of a cytotoxin-producing Helicobacter pylori strain on the Na+,K−-ATPase (evaluated as K+-dependent phosphatase activity) of human gastric epithelial cells in culture. The toxin itself is likely involved in this action which may also account for the cell edema found in vivo in Helicobacter pylori-colonized stomach

    Finite-gap Solutions of the Vortex Filament Equation: Isoperiodic Deformations

    Full text link
    We study the topology of quasiperiodic solutions of the vortex filament equation in a neighborhood of multiply covered circles. We construct these solutions by means of a sequence of isoperiodic deformations, at each step of which a real double point is "unpinched" to produce a new pair of branch points and therefore a solution of higher genus. We prove that every step in this process corresponds to a cabling operation on the previous curve, and we provide a labelling scheme that matches the deformation data with the knot type of the resulting filament.Comment: 33 pages, 5 figures; submitted to Journal of Nonlinear Scienc

    Rotational symmetry of self-similar solutions to the Ricci flow

    Full text link
    Let (M,g) be a three-dimensional steady gradient Ricci soliton which is non-flat and \kappa-noncollapsed. We prove that (M,g) is isometric to the Bryant soliton up to scaling. This solves a problem mentioned in Perelman's first paper.Comment: Final version, to appear in Invent. Mat

    Ricci Solitons and Einstein-Scalar Field Theory

    Full text link
    B List has recently studied a geometric flow whose fixed points correspond to static Ricci flat spacetimes. It is now known that this flow is in fact Ricci flow modulo pullback by a certain diffeomorphism. We use this observation to associate to each static Ricci flat spacetime a local Ricci soliton in one higher dimension. As well, solutions of Euclidean-signature Einstein gravity coupled to a free massless scalar field with nonzero cosmological constant are associated to shrinking or expanding Ricci solitons. We exhibit examples, including an explicit family of complete expanding solitons which can be thought of as a Ricci flow for a complete Lorentzian metric. The possible generalization to Ricci-flat stationary metrics leads us to consider an alternative to Ricci flow.Comment: 17 pages, 1 figure; Revised version (organizational changes, other minor revisions and corrections, citations corrected and added), to appear in CQ

    Hypersonic Laminar Boundary Layer Velocimetry with Discrete Roughness on a Flat Plate

    Get PDF
    Laminar boundary layer velocity measurements are made on a 10-degree half-angle wedge in a Mach 10 flow. Two types of discrete boundary layer trips were used to perturb the boundary layer gas. The first was a 2-mm tall, 4-mm diameter cylindrical trip. The second was a scaled version of the Orbiter Boundary Layer Transition (BLT) Detailed Test Objective (DTO) trip. Both 1-mm and 2.5-mm tall BLT DTO trips were tested. Additionally, side-view and plan-view axial boundary layer velocity measurements were made in the absence of these tripping devices. The free-stream unit Reynolds numbers tested for the cylindrical trips were 1.7x10(exp 6)/m and 3.3x10(exp 6)/m. The free-stream unit Reynolds number tested for the BLT DTO trips was 1.7x10(exp 6)/m. The angle of attack was kept at approximately 5-degrees for most of the tests resulting in a Mach number of approximately 8.3. These combinations of unit Reynolds numbers and angle of attack resulted in laminar flowfields. To study the precision of the measurement technique, the angle of attack was varied during one run. Nitric-oxide (NO) molecular tagging velocimetry (MTV) was used to obtain averaged axial velocity values and associated uncertainties. These uncertainties are as low as 20 m/s. An interline, progressive scan CCD camera was used to obtain separate images of the initial reference and shifted NO molecules that had been tagged by the laser. The CCD configuration allowed for sub-microsecond sequential acquisition of both images. The maximum planar spatial resolution achieved for the side-view velocity measurements was 0.07-mm in the wall-normal direction by 1.45-mm in the streamwise direction with a spatial depth of 0.5-mm. For the plan-view measurements, the maximum planar spatial resolution in the spanwise and streamwise directions was 0.69-mm by 1.28-mm, respectively, with a spatial depth of 0.5-mm. Temperature sensitive paint (TSP) measurements are provided to compliment the velocity data and to provide further insight into the behavior of the boundary layers. The experiments were performed at the NASA Langley Research Center 31-Inch Mach 10 Air tunnel
    • …
    corecore