The question: whether quantum coherent states can sustain decoherence,
heating and dissipation over time scales comparable to the dynamical timescales
of the brain neurons, is actively discussed in the last years. Positive answer
on this question is crucial, in particular, for consideration of brain neurons
as quantum computers. This discussion was mainly based on theoretical
arguments. In present paper nonlinear statistical properties of the Ventral
Tegmental Area (VTA) of genetically depressive limbic brain are studied {\it in
vivo} on the Flinders Sensitive Line of rats (FSL). VTA plays a key role in
generation of pleasure and in development of psychological drug addiction. We
found that the FSL VTA (dopaminergic) neuron signals exhibit multifractal
properties for interspike frequencies on the scales where healthy VTA
dopaminergic neurons exhibit bursting activity. For high moments the observed
multifractal (generalized dimensions) spectrum coincides with the generalized
dimensions spectrum calculated for a spectral measure of a {\it quantum} system
(so-called kicked Harper model, actively used as a model of quantum chaos).
This observation can be considered as a first experimental ({\it in vivo})
indication in the favour of the quantum (at least partially) nature of the
brain neurons activity