67 research outputs found

    Challenges and innovations in the economic evaluation of the risks of climate change

    Get PDF
    A large discrepancy exists between the dire impacts that most natural scientists project we could face from climate change and the modest estimates of damages calculated by mainstream economists. Economic assessments of climate change risks are intended to be comprehensive, covering the full range of physical impacts and their associated market and non-market costs, considering the greater vulnerability of poor people and the challenges of adaptation. Available estimates still fall significantly short of this goal, but alternative approaches that have been proposed attempt to address these gaps. This review seeks to provide a common basis for natural scientists, social scientists, and modellers to understand the research challenges involved in evaluating the economic risks of climate change. Focusing on the estimation processes embedded in economic integrated assessment models and the concerns raised in the literature, we summarise the frontiers of research relevant to improving quantitative damage estimates, representing the full complexity of the associated systems, and evaluating the impact of the various economic assumptions used to manage this complexity

    Model-based financial regulations impair the transition to net-zero carbon emissions

    Get PDF
    Investments via the financial system are essential for fostering the green transition. However, the role of existing financial regulations in influencing investment decisions is understudied. Here we analyse data from the European Banking Authority to show that existing financial accounting frameworks might inadvertently be creating disincentives for investments in low-carbon assets. We find that differences in the provision coverage ratio indicate that banks must account for nearly double the loan loss provisions for lending to low-carbon sectors as compared with high-carbon sectors. This bias is probably the result of basing risk estimates on historical data. We show that the average historical financial risk of the oil and gas sector has been consistently estimated to be lower than that of renewable energy. These results indicate that this bias could be present in other model-based regulations, such as capital requirements, and possibly impact the ability of banks to fund green investments

    Upstream decarbonization through a carbon takeback obligation: An affordable backstop climate policy

    Get PDF
    In the absence of immediate, rapid, and unprecedented reduction in global demand for carbon-intensive energy and products, the capture and permanent storage of billions of tons of carbon dioxide (CO2) annually will be needed before mid-century to meet Paris Agreement goals. Yet the focus on absolute emission reductions and cheaper, more temporary forms of carbon storage means that permanent CO2 disposal remains starved of investment, currently deployed to capture only about 0.1% of global Energy and Industrial Process (EIP) emissions. This stored fraction, the percentage of fossil EIP emissions that are captured and permanently stored, must reach 100% to stop EIP emissions causing further global warming. Here, we show that a cost-effective transition can occur by mandating an increasing stored fraction through a progressive carbon takeback obligation (CTBO) on fossil carbon producers and importers. By emulating the behavior of an integrated assessment model (IAM) and employing conservative assumptions for the costs of permanent carbon storage, we show that projected economy-wide costs of a CTBO policy are comparable to the costs associated with achieving similarly ambitious climate goals in IAMs employing a global carbon price, or potentially lower if the perceived policy risk cost associated with a CTBO is lower than that associated with a politically determined carbon price. Compared with a global carbon price, an upstream CTBO has advantages of simple governance, speed, and controllability: equivalent carbon prices under a CTBO are reliably capped by the cost of direct air capture and storage, by ensuring deployment keeps pace with continued fossil fuel use, reducing the risk of punitive carbon prices or more draconian measures being needed to drive out the final tranche of emissions. When combined with measures to reduce CO2 production in the near-term, a CTBO could deliver a viable pathway to achieving net-zero emissions consistent with 1.5°C by mid-century

    Listening to Voices: Understanding and Self-Management of Auditory Verbal Hallucinations in Young Adults

    Get PDF
    Aims Auditory Verbal Hallucinations (AVH) are a hallmark of psychosis, but affect many other clinical populations. Patients’ understanding and self-management of AVH may differ between diagnostic groups, change over time, and influence clinical outcomes. We aimed to explore patients’ understanding and self-management of AVH in a young adult clinical population. Method 35 participants reporting frequent AVH were purposively sampled from a youth mental health service, to capture experiences across psychosis and non-psychosis diagnoses. Diary and photo-elicitation methodologies were used – participants were asked to complete diaries documenting experiences of AVH, and to take photographs representing these experiences. In-depth, unstructured interviews were held, using participant-produced materials as a topic guide. Conventional content analysis was conducted, deriving results from the data in the form of themes. Result Three themes emerged: (1)Searching for answers, forming identities – voice-hearers sought to explain their experiences, resulting in the construction of identities for voices, and descriptions of relationships with them. These identities were drawn from participants’ life-stories (e.g., reflecting trauma), and belief-systems (e.g., reflecting supernatural beliefs, or mental illness). Some described this process as active / volitional. Participants described re-defining their own identities in relation to those constructed for AVH (e.g. as diseased, 'chosen', or persecuted), others considered AVH explicitly as aspects of, or changes in, their personality. (2)Coping strategies and goals – patients’ self-management strategies were diverse, reflecting the diverse negative experiences of AVH. Strategies were related to a smaller number of goals, e.g. distraction, soothing overwhelming emotions, 'reality-checking', and retaining agency. (3)Outlook – participants formed an overall outlook reflecting their self-efficacy in managing AVH. Resignation and hopelessness in connection with disabling AVH are contrasted with outlooks of “acceptance” or integration, which were described as positive, ideal, or mature. Conclusion Trans-diagnostic commonalities in understanding and self-management of AVH are highlighted - answer-seeking and identity-formation processes; a diversity of coping strategies and goals; and striving to accept the symptom. Descriptions of “voices-as-self”, and dysfunctional relationships with AVH, could represent specific features of voice-hearing in personality disorder, whereas certain supernatural/paranormal identities and explanations were clearly delusional. However, no aspect of identity-formation was completely unique to psychosis or non-psychosis diagnostic groups. The identity-formation process, coping strategies, and outlooks can be seen as a framework both for individual therapies and further research

    Decision Analysis for Management of Natural Hazards

    Get PDF
    Losses from natural hazards, including geophysical and hydrometeorological hazards, have been increasing worldwide. This review focuses on the process by which scientific evidence about natural hazards is applied to support decision making. Decision analysis typically involves estimating the probability of extreme events; assessing the potential impacts of those events from a variety of perspectives; and evaluating options to plan for, mitigate, or react to events. We consider issues that affect decisions made across a range of natural hazards, summarize decision methodologies, and provide examples of applications of decision analysis to the management of natural hazards. We conclude that there is potential for further exchange of ideas and experience between natural hazard research communities on decision analysis approaches. Broader application of decision methodologies to natural hazard management and evaluation of existing decision approaches can potentially lead to more efficient allocation of scarce resources and more efficient risk management

    Construction and Calibration of Optically Efficient LCD-based Multi-Layer Light Field Displays

    Get PDF
    Near-term commercial multi-view displays currently employ ray-based 3D or 4D light field techniques. Conventional approaches to ray-based display typically include lens arrays or heuristic barrier patterns combined with integral interlaced views on a display screen such as an LCD panel. Recent work has placed an emphasis on the co-design of optics and image formation algorithms to achieve increased frame rates, brighter images, and wider fields-of-view using optimization-in-the-loop and novel arrangements of commodity LCD panels. In this paper we examine the construction and calibration methods of computational, multi-layer LCD light field displays. We present several experimental configurations that are simple to build and can be tuned to sufficient precision to achieve a research quality light field display. We also present an analysis of moiré interference in these displays, and guidelines for diffuser placement and display alignment to reduce the effects of moiré. We describe a technique using the moiré magnifier to fine-tune the alignment of the LCD layers

    Association of Accelerometry-Measured Physical Activity and Cardiovascular Events in Mobility-Limited Older Adults: The LIFE (Lifestyle Interventions and Independence for Elders) Study.

    Get PDF
    BACKGROUND:Data are sparse regarding the value of physical activity (PA) surveillance among older adults-particularly among those with mobility limitations. The objective of this study was to examine longitudinal associations between objectively measured daily PA and the incidence of cardiovascular events among older adults in the LIFE (Lifestyle Interventions and Independence for Elders) study. METHODS AND RESULTS:Cardiovascular events were adjudicated based on medical records review, and cardiovascular risk factors were controlled for in the analysis. Home-based activity data were collected by hip-worn accelerometers at baseline and at 6, 12, and 24 months postrandomization to either a physical activity or health education intervention. LIFE study participants (n=1590; age 78.9±5.2 [SD] years; 67.2% women) at baseline had an 11% lower incidence of experiencing a subsequent cardiovascular event per 500 steps taken per day based on activity data (hazard ratio, 0.89; 95% confidence interval, 0.84-0.96; P=0.001). At baseline, every 30 minutes spent performing activities ≄500 counts per minute (hazard ratio, 0.75; confidence interval, 0.65-0.89 [P=0.001]) were also associated with a lower incidence of cardiovascular events. Throughout follow-up (6, 12, and 24 months), both the number of steps per day (per 500 steps; hazard ratio, 0.90, confidence interval, 0.85-0.96 [P=0.001]) and duration of activity ≄500 counts per minute (per 30 minutes; hazard ratio, 0.76; confidence interval, 0.63-0.90 [P=0.002]) were significantly associated with lower cardiovascular event rates. CONCLUSIONS:Objective measurements of physical activity via accelerometry were associated with cardiovascular events among older adults with limited mobility (summary score >10 on the Short Physical Performance Battery) both using baseline and longitudinal data. CLINICAL TRIAL REGISTRATION:URL: http://www.clinicaltrials.gov. Unique identifier: NCT01072500

    Naive and memory human B cells have distinct requirements for STAT3 activation to differentiate into antibody-secreting plasma cells

    No full text
    Long-lived antibody memory is mediated by the combined effects of long-lived plasma cells (PCs) and memory B cells generated in response to T cell–dependent antigens (Ags). IL-10 and IL-21 can activate multiple signaling pathways, including STAT1, STAT3, and STAT5; ERK; PI3K/Akt, and potently promote human B cell differentiation. We previously showed that loss-of-function mutations in STAT3, but not STAT1, abrogate IL-10– and IL-21–mediated differentiation of human naive B cells into plasmablasts. We report here that, in contrast to naive B cells, STAT3-deficient memory B cells responded to these STAT3-activating cytokines, differentiating into plasmablasts and secreting high levels of IgM, IgG, and IgA, as well as Ag-specific IgG. This was associated with the induction of the molecular machinery necessary for PC formation. Mutations in IL21R, however, abolished IL-21–induced responses of both naive and memory human B cells and compromised memory B cell formation in vivo. These findings reveal a key role for IL-21R/STAT3 signaling in regulating human B cell function. Furthermore, our results indicate that the threshold of STAT3 activation required for differentiation is lower in memory compared with naive B cells, thereby identifying an intrinsic difference in the mechanism underlying differentiation of naive versus memory B cells.This work was funded by project and program grants from the National Health and Medical Research Council (NHMRC) of Australia (to E.K. Deenick, C.S. Ma, D.A. Fulcher, M.C. Cook, and S.G. Tangye) and the Rockefeller University Center for 541 Clinical and Translational science (5UL1RR024143 to J.L. Casanova). C.S. Ma is a recipient of a Career Development Fellowship, L.J. Berglund is a recipient of a Medical Postgraduate Scholarship, and S.G. Tangye is a recipient of a Principal Research Fellowship from the NHMRC of Australia. L. Moens is the recipient of a Postdoctoral Fellowship from the Research Foundation-Flanders (FWO), Belgium

    Exploring, exploiting and evolving diversity of aquatic ecosystem models: A community perspective

    Get PDF
    Here, we present a community perspective on how to explore, exploit and evolve the diversity in aquatic ecosystem models. These models play an important role in understanding the functioning of aquatic ecosystems, filling in observation gaps and developing effective strategies for water quality management. In this spirit, numerous models have been developed since the 1970s. We set off to explore model diversity by making an inventory among 42 aquatic ecosystem modellers, by categorizing the resulting set of models and by analysing them for diversity. We then focus on how to exploit model diversity by comparing and combining different aspects of existing models. Finally, we discuss how model diversity came about in the past and could evolve in the future. Throughout our study, we use analogies from biodiversity research to analyse and interpret model diversity. We recommend to make models publicly available through open-source policies, to standardize documentation and technical implementation of models, and to compare models through ensemble modelling and interdisciplinary approaches. We end with our perspective on how the field of aquatic ecosystem modelling might develop in the next 5–10 years. To strive for clarity and to improve readability for non-modellers, we include a glossary

    Scanning Angle Plasmon Waveguide Resonance Raman Spectroscopy for the Analysis of Thin Polystyrene Films

    Get PDF
    Scanning angle (SA) Raman spectroscopy was used to characterize thin polymer films at a sapphire/50 nm gold film/polystyrene/air interface. When the polymer thickness is greater than ∌260 nm, this interface behaves as a plasmon waveguide; Raman scatter is greatly enhanced with both p- and s-polarized excitation compared to an interface without the gold film. In this study, the reflected light intensities from the interface and Raman spectra were collected as a function of incident angle for three samples with different polystyrene thicknesses. The Raman peak areas were well modeled with the calculated mean-square electric field (MSEF) integrated over the polymer film at varying incident angles. A 412 nm polystyrene plasmon waveguide generated 3.34× the Raman signal at 40.52° (the plasmon waveguide resonance angle) compared to the signal measured at 70.4° (the surface plasmon resonance angle). None of the studied polystyrene plasmon waveguides produced detectable Raman scatter using a 180° backscatter collection geometry, demonstrating the sensitivity of the SA Raman technique. The data highlight the ability to measure polymer thickness, chemical content, and, when combined with calculations of MSEF as a function of distance from the interface, details of polymer structure and order. The SA Raman spectroscopy thickness measurements agreed with those obtained from optical interferometery with an average difference of 2.6%. This technique has the potential to impact the rapidly developing technologies utilizing metal/polymer films for energy storage and electronic devices
    • 

    corecore