12,269 research outputs found

    Vortex Polarity Switching in Magnets with Surface Anisotropy

    Get PDF
    Vortex core reversal in magnetic particle is essentially influenced by a surface anisotropy. Under the action of a perpendicular static magnetic field the vortex core undergoes a shape deformationof pillow- or barrel-shaped type, depending on the type of the surface anisotropy. This deformation plays a key point in the switching mechanism: We predict that the vortex polarity switching is accompanied (i) by a linear singularity in case of Heisenberg magnet with bulk anisotropy only and (ii) by a point singularities in case of surface anisotropy or exchange anisotropy. We study in details the switching process using spin-lattice simulations and propose a simple analytical description using a wired core model, which provides an adequate description of the Bloch point statics, its dynamics and the Bloch point mediated switching process. Our analytical predictions are confirmed by spin-lattice simulations for Heisenberg magnet and micromagnetic simulations for nanomagnet with account of a dipolar interaction.Comment: 17 pages, 15 figure

    Exclusive channels in semi-inclusive production of pions and kaons

    Full text link
    We investigate the role of exclusive channels in semi-inclusive electroproduction of pions and kaons. Using the QCD factorization theorem for hard exclusive processes we evaluate the cross sections for exclusive pseudoscalar and vector meson production in terms of generalized parton distributions and meson distribution amplitudes. We investigate the uncertainties arising from the modeling of the nonperturbative input quantities. Combining these results with available experimental data, we compare the cross sections for exclusive channels to that obtained from quark fragmentation in semi-inclusive deep inelastic scattering. We find that rho^0 production is the only exclusive channel with significant contributions to semi-inclusive pion production at large z and moderate Q^2. The corresponding contribution to kaon production from the decay of exclusively produced phi and K^* is rather small.Comment: 33 pages, 18 figure

    Magnetic-field and doping dependence of low-energy spin fluctuations in the antiferroquadrupolar compound Ce(1-x)La(x)B(6)

    Get PDF
    CeB(6) is a model compound exhibiting antiferroquadrupolar (AFQ) order, its magnetic properties being typically interpreted within localized models. More recently, the observation of strong and sharp magnetic exciton modes forming in its antiferromagnetic (AFM) state at both ferromagnetic and AFQ wave vectors suggested a significant contribution of itinerant electrons to the spin dynamics. Here we investigate the evolution of the AFQ excitation upon the application of an external magnetic field and the substitution of Ce with non-magnetic La, both parameters known to suppress the AFM phase. We find that the exciton energy decreases proportionally to T_N upon doping. In field, its intensity is suppressed, while its energy remains constant. Its disappearance above the critical field of the AFM phase is preceded by the formation of two modes, whose energies grow linearly with magnetic field upon entering the AFQ phase. These findings suggest a crossover from itinerant to localized spin dynamics between the two phases, the coupling to heavy-fermion quasiparticles being crucial for a comprehensive description of the magnon spectrum.Comment: Extended version with a longer introduction and an additional figure. 6 pages and 5 figure

    Resonant magnetic excitations at high energy in superconducting YBa2Cu3O6.85\bf YBa_2Cu_3O_{6.85}

    Full text link
    A detailed inelastic neutron scattering study of the high temperature superconductor YBa2Cu3O6.85\rm YBa_2Cu_3O_{6.85} provides evidence of new resonant magnetic features, in addition to the well known resonant mode at 41 meV: (i) a commensurate magnetic resonance peak at 53 meV with an even symmetry under exchange of two adjacent CuO2\rm CuO_2 layers; and (ii) high energy incommensurate resonant spin excitations whose spectral weight is around 54 meV. The locus and the spectral weight of these modes can be understood by considering the momentum shape of the electron-hole spin-flip continuum of d-wave superconductors. This provides new insight into the interplay between collective spin excitations and the continuum of electron-hole excitations.Comment: 5 figure

    Doping Dependence of Bilayer Resonant Spin Excitations in (Y,Ca)Ba2Cu3O6+x\bf (Y,Ca)Ba_2Cu_3O_{6+x}

    Full text link
    Resonant magnetic modes with odd and even symmetries were studied by inelastic neutron scattering experiments in the bilayer high-TcT_c superconductor Y1xCaxBa2Cu3O6+y\rm Y_{1-x}Ca_{x}Ba_2Cu_3O_{6+y} over a wide doping range. The threshold of the spin excitation continuum in the superconducting state, deduced from the energies and spectral weights of both modes, is compared with the superconducting d-wave gap, measured on the same samples by electronic Raman scattering in the B1gB_{1g} symmetry. Above a critical doping level of δ0.19\delta \simeq 0.19, both mode energies and the continuum threshold coincide. We find a simple scaling relationship between the characteristic energies and spectral weights of both modes, which indicates that the resonant modes are bound states in the superconducting energy gap, as predicted by the spin-exciton model of the resonant mode.Comment: 4 figure

    Two resonant magnetic modes in an overdoped high-Tc\bf T_c superconductor

    Full text link
    A detailed inelastic neutron scattering study of the overdoped high temperature copper oxide superconductor Y0.9Ca0.1Ba2Cu3O7{Y_{0.9}Ca_{0.1}Ba_{2}Cu_3O_{7}} reveals two distinct magnetic resonant modes in the superconducting state. The modes differ in their symmetry with respect to exchange between adjacent copper oxide layers. Counterparts of the mode with odd symmetry, but not the one with even symmetry, had been observed before at lower doping levels. The observation of the even mode resolves a long-standing puzzle, and the spectral weight ratio of both modes yields an estimate of the onset of particle-hole spin-flip excitations.Comment: Submitted to PR
    corecore