150 research outputs found

    Shear-induced α → γ transformation in nanoscale Fe-C composite

    Get PDF
    High-resolution transmission electron microscopy and three-dimensional atom probe observations show clearly that a reverse transformation of body-centred cubic ferrite to face-centred cubic austenite occurs during severe plastic deformation of a pearlitic steel resulting in a nanocrystalline structure, something that never occurs in conventional deformation of coarse-grained iron and steels. The driving force and the mechanisms of this reverse transformation are discussed. It is shown that nanostructure and shear stresses are essential for this process, and the results confirm molecular dynamics predictions of such transformations in nanocrystalline iron

    Experimental and numerical analysis of HPTE on mechanical properties of materials and strain distribution

    Get PDF
    High Pressure Torsion Extrusion (HPTE) is a novel technique which has been recently introduced to the society of Nano-SPD researchers. HPTE exploits the deformation mechanics of HPT but in a larger scale using rod-shape samples and is capable of applying high values of strain to materials in one pass. This research aims to evaluate the effect of HPTE on mechanical properties of materials and also to study the effect of geometry of HPTE die on strain distribution in deformed samples by using Finite Element Method (FEM). Commercial pure Aluminium AA1050 was used for experimental work; and eccentric dies with parallelmisaligned channels were developed for evaluation by numerical modelling. Results of this research will help us better understand the effect of process parameters and also geometry of the die on materials

    Degradation of structure and properties of rail surface layer at long-term operation

    Get PDF
    The microstructure evolution and properties variation of the surface layer of rail steel after passed 500 and 1000 million tons of gross weight (MTGW) have been investigated. The wear rate increases to 3 and 3.4 times after passed 500 and 1000 MTGW, respectively. The corresponding friction coefficient decreases by 1.4 and 1.1 times. The cementite plates were destroyed and formed the cementite particles of around 10-50 nm in size after passed 500 MTGW. The early stage dynamical recrystallization was observed after passed 1000 MTGW. The mechanisms for these have been suggested. The large number of bend extinction contours is revealed in the surface layer. The internal stress field is evaluated

    Effect of high-pressure torsion on structure and properties of Ti-15Mo/TiB metal-matrix composite

    Get PDF
    The microstructure and microhardness evolution of a Ti-15(wt.%)Mo/TiB metal-matrix composite (MMC) during high-pressure torsion (HPT) at 400 °C was studied. The composite was fabricated by spark plasma sintering of a Ti, Mo and TiB2 powders mixture at 1200 °C. In the initial condition, the structure of the composite consisted mainly of body-centered cubic (bcc) Ti solid solution and TiB whiskers. An increase in dislocation density, a considerable decrease in a grain size in the bcc Ti matrix, and breaking/rearrangement of the TiB whiskers were observed during HPT. The (sub)grain size in the bcc Ti matrix attained after 1 revolution was ~75 nm and then gradually decreased to ~55 nm after 5 revolutions. The TiB particle sizes after 5 revolutions was found to be 130–210 nm. The microhardness increased with strain from 575 HV in the initial state to 730 HV after 5 revolutions. Various hardening mechanisms’ contributions in the Ti-15Mo/TiB were evaluated

    FLORA: a novel method to predict protein function from structure in diverse superfamilies

    Get PDF
    Predicting protein function from structure remains an active area of interest, particularly for the structural genomics initiatives where a substantial number of structures are initially solved with little or no functional characterisation. Although global structure comparison methods can be used to transfer functional annotations, the relationship between fold and function is complex, particularly in functionally diverse superfamilies that have evolved through different secondary structure embellishments to a common structural core. The majority of prediction algorithms employ local templates built on known or predicted functional residues. Here, we present a novel method (FLORA) that automatically generates structural motifs associated with different functional sub-families (FSGs) within functionally diverse domain superfamilies. Templates are created purely on the basis of their specificity for a given FSG, and the method makes no prior prediction of functional sites, nor assumes specific physico-chemical properties of residues. FLORA is able to accurately discriminate between homologous domains with different functions and substantially outperforms (a 2–3 fold increase in coverage at low error rates) popular structure comparison methods and a leading function prediction method. We benchmark FLORA on a large data set of enzyme superfamilies from all three major protein classes (α, β, αβ) and demonstrate the functional relevance of the motifs it identifies. We also provide novel predictions of enzymatic activity for a large number of structures solved by the Protein Structure Initiative. Overall, we show that FLORA is able to effectively detect functionally similar protein domain structures by purely using patterns of structural conservation of all residues

    Tick-Borne Encephalitis with Hemorrhagic Syndrome, Novosibirsk Region, Russia, 1999

    Get PDF
    Eight fatal cases of tick-borne encephalitis with unusual hemorrhagic syndrome were identified in 1999 in the Novosibirsk Region, Russia. To study these strains, we sequenced cDNA fragments of protein E gene from six archival formalin-fixed brain samples. Phylogenetic analysis showed tick-borne encephalitis variants clustered with a Far Eastern subtype (homology 94.7%) but not with the Siberian subtype (82%)

    Discriminative structural approaches for enzyme active-site prediction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Predicting enzyme active-sites in proteins is an important issue not only for protein sciences but also for a variety of practical applications such as drug design. Because enzyme reaction mechanisms are based on the local structures of enzyme active-sites, various template-based methods that compare local structures in proteins have been developed to date. In comparing such local sites, a simple measurement, RMSD, has been used so far.</p> <p>Results</p> <p>This paper introduces new machine learning algorithms that refine the similarity/deviation for comparison of local structures. The similarity/deviation is applied to two types of applications, single template analysis and multiple template analysis. In the single template analysis, a single template is used as a query to search proteins for active sites, whereas a protein structure is examined as a query to discover the possible active-sites using a set of templates in the multiple template analysis.</p> <p>Conclusions</p> <p>This paper experimentally illustrates that the machine learning algorithms effectively improve the similarity/deviation measurements for both the analyses.</p

    Barrier-to-autointegration factor 1 (Banf1) regulates poly [ADP-ribose] polymerase 1 (PARP1) activity following oxidative DNA damage

    Get PDF
    The DNA repair capacity of human cells declines with age, in a process that is not clearly understood. Mutation of the nuclear envelope protein barrier-to-autointegration factor 1 (Banf1) has previously been shown to cause a human progeroid disorder, Néstor–Guillermo progeria syndrome (NGPS). The underlying links between Banf1, DNA repair and the ageing process are unknown. Here, we report that Banf1 controls the DNA damage response to oxidative stress via regulation of poly [ADP-ribose] polymerase 1 (PARP1). Specifically, oxidative lesions promote direct binding of Banf1 to PARP1, a critical NAD-dependent DNA repair protein, leading to inhibition of PARP1 auto-ADP-ribosylation and defective repair of oxidative lesions, in cells with increased Banf1. Consistent with this, cells from patients with NGPS have defective PARP1 activity and impaired repair of oxidative lesions. These data support a model whereby Banf1 is crucial to reset oxidative-stress-induced PARP1 activity. Together, these data offer insight into Banf1-regulated, PARP1-directed repair of oxidative lesions
    corecore