14 research outputs found

    Cross-Layer Combining of Adaptive Modulation and Truncated ARQ in Multichannel Beamforming MIMO Systems

    Get PDF
    In this study the authors provide a cross-layer design of multiple-input-multiple-output (MIMO) systems, with the aim to maximize spectral efficiency. We consider MIMO systems based on a multichannel beamforming technique that combines an adaptive modulation and truncated automatic repeat request procedures, for the case of Rayleigh fading propagation and imperfect channel state information. Closed-form expressions for the average spectral efficiency and the packet loss rate are derived for arbitrary eigenchannel of multichannel beamforming systems, with any number of receiving and transmitting antennas. An analytical expression for the average time during which a particular constellation is used continuously, is also derived. We propose the method based on the optimization of the target packet error rate and the maximum number of retransmissions that outperforms the existing cross-layer combining procedures. Furthermore, we develop the numerical algorithm for optimization of the eigenchannel power allocation. The proposed cross-layer design results in higher average spectral efficiency, reduced maximum delay and increased energy efficiency. The analytical results are validated by Monte Carlo simulation

    Noise-aided gradient descent bit-flipping decoders approaching maximum likelihood decoding

    No full text
    International audienceIn the recent literature, the study of iterative LDPC decoders implemented on faulty-hardware has led to the counter-intuitive conclusion that noisy decoders could perform better than their noiseless version. This peculiar behavior has been observed in the finite codeword length regime, where the noise perturbating the decoder dynamics help to escape the attraction of fixed points such as trapping sets. In this paper, we will study two recently introduced LDPC decoders derived from noisy versions of the gradient descent bit-flipping decoder (GDBF). Although the GDBF is known to be a simple decoder with limited error correction capability compared to more powerful soft-decision decoders, it has been shown that the introduction of a random perturbation in the decoder could greatly improve the performance results, approaching and even surpassing belief propagation or min-sum based decoders. For both decoders, we evaluate the probability of escaping from a Trapping set, and relate this probability to the parameters of the injected noise distribution, using a Markovian model of the decoder transitions in the state space of errors localized on isolated trapping sets. In a second part of the paper, we present a modified scheduling of our algorithms for the binary symmetric channel, which allows to approach maximum likelihood decoding (MLD) at the cost of a very large number of iterations

    Solutions of ionic liquids with diverse aliphatic and aromatic solutes – Phase behavior and potentials for applications:A review article

    Get PDF
    This article principally reviews our research related to liquid–liquid and solid–liquid phase behavior of imidazolium- and phosphonium-based ionic liquids, mainly having bistriflamide ([NTf2]−) or triflate ([OTf]−) anions, with several aliphatic and aromatic solutes (target molecules). The latter include: (i) diols and triols: 1,2-propanediol, 1,3-propanediol and glycerol; (ii) polymer poly(ethylene glycol) (PEG): average molecular mass 200, 400 and 2050 – PEG200 (liquid), PEG400 (liquid) and PEG2050 (solid), respectively; (iii) polar aromatic compounds: nicotine, aniline, phenolic acids (vanillic, ferulic and caffeic acid,), thymol and caffeine and (iv) non-polar aromatic compounds (benzene, toluene, p-xylene). In these studies, the effects of the cation and anion, cation alkyl chain and PEG chain lengths on the observed phase behaviors were scrutinized. Thus, one of the major observations is that the anion – bistriflamide/triflate – selection usually had strong, sometimes really remarkable effects on the solvent abilities of the studied ionic liquids. Namely, in the case of the hydrogen-bonding solutes, the ionic liquids with the triflate anion generally exhibited substantially higher solubility than those having the bistriflamide anion. Nevertheless, with the aromatic compounds the situation was the opposite – in most of the cases it was the bistriflamide anion that favoured solubility. Moreover, our other studies confirmed the ability of PEG to dissolve both polar and non-polar aromatic compounds. Therefore, two general possibilities of application of alternative, environmentally acceptable, solvents of tuneable solvent properties appeared. One is to use homogeneous mixtures of two ionic liquids having [NTf2]− and [OTf]− anions as mixed solvents. The other, however, envisages the application of homogeneous and heterogeneous (PEG + ionic liquid) solutions as tuneable solvents for aromatic solutes. Such mixed solvents have potential applications in separation of the aforesaid target molecules from their aqueous solutions or in extraction from original matrices. From the fundamental point of view the phase equilibrium studies reviewed herein and the diversity of the pure compounds – ionic liquids and target molecules – represent a good base for the discussion of interactions between the molecules that exist in the studied solutions

    Symbolic Analysis of Faulty Logic Circuits under Correlated Data-Dependent Gate Failures

    No full text
    In this paper we present a method for symbolic analysis of unreliable logic circuits in the presence of correlated and data-dependent gate failures, described by Markov chains. Furthermore, using this method we investigate the influence of data-dependent failures on the performance of majority logic and multiple input XOR gates

    Echinococcus cysticus in der Leber

    No full text

    Performance Analysis of Faulty Gallager-B Decoding of QC-LDPC Codes with Applications

    No full text
    In this paper we evaluate the performance of Gallager-B algorithm, used for decoding low-density parity-check (LDPC) codes, under unreliable message computation. Our analysis is restricted to LDPC codes constructed from circular matrices (QC-LDPC codes). Using Monte Carlo simulation we investigate the effects of different code parameters on coding system performance, under a binary symmetric communication channel and independent transient faults model. One possible application of the presented analysis in designing memory architecture with unreliable components is considered

    Bortezomib-induced neuropathy is in part mediated by the sensitization of TRPV1 channels

    No full text
    Abstract TRPV1 is an ion channel that transduces noxious heat and chemical stimuli and is expressed in small fiber primary sensory neurons that represent almost half of skin nerve terminals. Tissue injury and inflammation result in the sensitization of TRPV1 and sustained activation of TRPV1 can lead to cellular toxicity though calcium influx. To identify signals that trigger TRPV1 sensitization after a 24-h exposure, we developed a phenotypic assay in mouse primary sensory neurons and performed an unbiased screen with a compound library of 480 diverse bioactive compounds. Chemotherapeutic agents, calcium ion deregulators and protein synthesis inhibitors were long-acting TRPV1 sensitizers. Amongst the strongest TRPV1 sensitizers were proteasome inhibitors, a class that includes bortezomib, a chemotherapeutic agent that causes small fiber neuropathy in 30–50% of patients. Prolonged exposure of bortezomib produced a TRPV1 sensitization that lasted several days and neurite retraction in vitro and histological and behavioral changes in male mice in vivo. TRPV1 knockout mice were protected from epidermal nerve fiber loss and a loss of sensory discrimination after bortezomib treatment. We conclude that long-term TRPV1 sensitization contributes to the development of bortezomib-induced neuropathy and the consequent loss of sensation, major deficits experienced by patients under this chemotherapeutic agent
    corecore