2,667 research outputs found

    Quantum jumps on Anderson attractors

    Get PDF
    In a closed single-particle quantum system, spatial disorder induces Anderson localization of eigenstates and halts wave propagation. The phenomenon is vulnerable to interaction with environment and decoherence, that is believed to restore normal diffusion. We demonstrate that for a class of experimentally feasible non-Hermitian dissipators, which admit signatures of localization in asymptotic states, quantum particle opts between diffusive and ballistic regimes, depending on the phase parameter of dissipators, with sticking about localization centers. In diffusive regime, statistics of quantum jumps is non-Poissonian and has a power-law interval, a footprint of intermittent locking in Anderson modes. Ballistic propagation reflects dispersion of an ordered lattice and introduces a new timescale for jumps with non-monotonous probability distribution. Hermitian dephasing dissipation makes localization features vanish, and Poissonian jump statistics along with normal diffusion are recovered.Comment: 6 pages, 5 figure

    Cryptocurrency

    Get PDF

    Signatures of many-body localization in steady states of open quantum systems

    Get PDF
    Many-body localization (MBL) is a result of the balance between interference-based Anderson localization and many-body interactions in an ultra-high dimensional Fock space. It is usually expected that dissipation is blurring interference and destroying that balance so that the asymptotic state of a system with an MBL Hamiltonian does not bear localization signatures. We demonstrate, within the framework of the Lindblad formalism, that the system can be brought into a steady state with non-vanishing MBL signatures. We use a set of dissipative operators acting on pairs of connected sites (or spins), and show that the difference between ergodic and MBL Hamiltonians is encoded in the imbalance, entanglement entropy, and level spacing characteristics of the density operator. An MBL system which is exposed to the combined impact of local dephasing and pairwise dissipation evinces localization signatures hitherto absent in the dephasing-outshaped steady state.Comment: 6 pages, 3 figure

    Bioenergy

    Get PDF

    The Advantages And Purpose Of Expert Systems

    Get PDF
    corecore