28 research outputs found
Method to determine defect positions below a metal surface by STM
The oscillatory voltage dependence of the conductance of a quantum point
contact in the presence of a single point-like defect has been analyzed
theoretically. Such signals are detectable and may be exploited to obtain
information on defect positions below a metal surface. Both tunnel junctions
and ballistic contacts of adiabatic shape have been considered. The effect of
quantum interference has been taking into account between the principal wave
that is directly transmitted through the contact and the partial wave that is
scattered by the contact and the defect. This effect leads to oscillations of
the conductance as a function of applied voltage. We obtain the dependence of
the period and amplitude of the conductance oscillations on the position of the
defect inside the metal.Comment: 16 pages, 7 figure
Signature of Fermi surface anisotropy in point contact conductance in the presence of defects
In a previous paper (Avotina et al.,Phys. Rev. B Vol.71, 115430 (2005)) we
have shown that in principle it is possible to image the defect positions below
a metal surface by means of a scanning tunnelling microscope. The principle
relies on the interference of electron waves scattered on the defects, which
give rise to small but measurable conductance fluctuations. Whereas in that
work the band structure was assumed to be free-electron like, here we
investigate the effects of Fermi surface anisotropy. We demonstrate that the
amplitude and period of the conductance oscillations are determined by the
local geometry of the Fermi surface. The signal results from those points for
which the electron velocity is directed along the vector connecting the point
contact to the defect. For a general Fermi surface geometry the position of the
maximum amplitude of the conductance oscillations is not found for the tip
directly above the defect. We have determined optimal conditions for
determination of defect positions in metals with closed and open Fermi
surfaces.Comment: 23 pages, 8 figure
Conductance of a STM contact on the surface of a thin film
The conductance of a contact, having a radius smaller than the Fermi wave
length, on the surface of a thin metal film is investigated theoretically. It
is shown that quantization of the electron energy spectrum in the film leads to
a step-like dependence of differential conductance G(V) as a function of
applied bias eV. The distance between neighboring steps in eV equals the energy
level spacing due to size quantization. We demonstrate that a study of G(V) for
both signs of the voltage maps the spectrum of energy levels above and below
Fermi surface in scanning tunneling experiments.Comment: 15 pages, 5 figure
Temperature-dependent quantum electron transport in 2D point contact
We consider a transmission of electrons through a two-dimensional ballistic
point contact in the low-conductance regime below the 0.7-anomaly. The
scattering of electrons by Friedel oscillations of charge density results in a
contribution to the conductance proportional to the temperature. The sign of
this linear term depends on the range of the electron-electron interaction and
appears to be negative for the relevant experimental parameters.Comment: 10 pages, 5 figure
Andreev reflection and order parameter symmetry in heavy-fermion superconductors: the case of CeCoIn
We review the current status of Andreev reflection spectroscopy on the heavy
fermions, mostly focusing on the case of CeCoIn, a heavy-fermion
superconductor with a critical temperature of 2.3 K. This is a well-established
technique to investigate superconducting order parameters via measurements of
the differential conductance from nanoscale metallic junctions. Andreev
reflection is clearly observed in CeCoIn as in other heavy-fermion
superconductors. The measured Andreev signal is highly reduced to the order of
maximum 13% compared to the theoretically predicted value (100%).
Analysis of the conductance spectra using the extended BTK model provides a
qualitative measure for the superconducting order parameter symmetry, which is
determined to be -wave in CeCoIn. A phenomenological model is
proposed employing a Fano interference effect between two conductance channels
in order to explain both the conductance asymmetry and the reduced Andreev
signal. This model appears plausible not only because it provides good fits to
the data but also because it is highly likely that the electrical conduction
occurs via two channels, one into the heavy electron liquid and the other into
the conduction electron continuum. Further experimental and theoretical
investigations will shed new light on the mechanism of how the coherent
heavy-electron liquid emerges out of the Kondo lattice, a prototypical strongly
correlated electron system. Unresolved issues and future directions are also
discussed.Comment: Topical Review published in JPCM (see below), 28 pages, 9 figure
Electrostatic and electrokinetic contributions to the elastic moduli of a driven membrane
We discuss the electrostatic contribution to the elastic moduli of a cell or
artificial membrane placed in an electrolyte and driven by a DC electric field.
The field drives ion currents across the membrane, through specific channels,
pumps or natural pores. In steady state, charges accumulate in the Debye layers
close to the membrane, modifying the membrane elastic moduli. We first study a
model of a membrane of zero thickness, later generalizing this treatment to
allow for a finite thickness and finite dielectric constant. Our results
clarify and extend the results presented in [D. Lacoste, M. Cosentino
Lagomarsino, and J. F. Joanny, Europhys. Lett., {\bf 77}, 18006 (2007)], by
providing a physical explanation for a destabilizing term proportional to
\kps^3 in the fluctuation spectrum, which we relate to a nonlinear ()
electro-kinetic effect called induced-charge electro-osmosis (ICEO). Recent
studies of ICEO have focused on electrodes and polarizable particles, where an
applied bulk field is perturbed by capacitive charging of the double layer and
drives flow along the field axis toward surface protrusions; in contrast, we
predict "reverse" ICEO flows around driven membranes, due to curvature-induced
tangential fields within a non-equilibrium double layer, which hydrodynamically
enhance protrusions. We also consider the effect of incorporating the dynamics
of a spatially dependent concentration field for the ion channels.Comment: 22 pages, 10 figures. Under review for EPJ
Global mortality and readmission rates following COPD exacerbation-related hospitalisation: a meta-analysis of 65 945 individual patients
\ua9 2024, European Respiratory Society. All rights reserved.Background Exacerbations of COPD (ECOPD) have a major impact on patients and healthcare systems across the world. Precise estimates of the global burden of ECOPD on mortality and hospital readmission are needed to inform policy makers and aid preventive strategies to mitigate this burden. The aims of the present study were to explore global in-hospital mortality, post-discharge mortality and hospital readmission rates after ECOPD-related hospitalisation using an individual patient data meta-analysis (IPDMA) design. Methods A systematic review was performed identifying studies that reported in-hospital mortality, postdischarge mortality and hospital readmission rates following ECOPD-related hospitalisation. Data analyses were conducted using a one-stage random-effects meta-analysis model. This study was conducted and reported in accordance with the PRISMA-IPD statement. Results Data of 65 945 individual patients with COPD were analysed. The pooled in-hospital mortality rate was 6.2%, pooled 30-, 90- and 365-day post-discharge mortality rates were 1.8%, 5.5% and 10.9%, respectively, and pooled 30-, 90- and 365-day hospital readmission rates were 7.1%, 12.6% and 32.1%, respectively, with noticeable variability between studies and countries. Strongest predictors of mortality and hospital readmission included noninvasive mechanical ventilation and a history of two or more ECOPD-related hospitalisation
Analysis of nonlinear conductivity of point contacts on the base of FeSe in the normal and superconducting state
Nonlinear conductivity of point contacts (PCs) on the base of FeSe single
crystals has been investigated. Measured dV/dI dependencies demonstrate the
prevailing contribution to the PC conductivity caused by the degraded surface.
Superconducting (SC) feature in dV/dI like a sharp zero-bias minimum develops
for relatively low ohmic PCs, where the deep areas of FeSe are involved.
Analysis of dV/dI has shown that the origin of the zero-bias minimum is
connected with the Maxwell part of the PC resistance, what masks energy
dependent spectral peculiarities. Even so, we have found the specific features
in dV/dI - the sharp side maxima, which may have connection to the SC gap,
since their position follows the BCS temperature dependence. Exploring the
dV/dI spectra of the rare occurrence with Andreev-like structure, the two gaps
with Delta = 2.5 and 3.5 meV were identified.Comment: 10 pages, 6 figs., accepted for publication in "Low Temperature
Physics