764 research outputs found

    Search For Heavy Pointlike Dirac Monopoles

    Get PDF
    We have searched for central production of a pair of photons with high transverse energies in ppˉp\bar p collisions at s=1.8\sqrt{s} = 1.8 TeV using 70pb170 pb^{-1} of data collected with the D\O detector at the Fermilab Tevatron in 1994--1996. If they exist, virtual heavy pointlike Dirac monopoles could rescatter pairs of nearly real photons into this final state via a box diagram. We observe no excess of events above background, and set lower 95% C.L. limits of 610,870,or1580GeV/c2610, 870, or 1580 GeV/c^2 on the mass of a spin 0, 1/2, or 1 Dirac monopole.Comment: 12 pages, 4 figure

    Search for High Mass Photon Pairs in p-pbar --> gamma-gamma-jet-jet Events at sqrt(s)=1.8 TeV

    Get PDF
    A search has been carried out for events in the channel p-barp --> gamma gamma jet jet. Such a signature can characterize the production of a non-standard Higgs boson together with a W or Z boson. We refer to this non-standard Higgs, having standard model couplings to vector bosons but no coupling to fermions, as a "bosonic Higgs." With the requirement of two high transverse energy photons and two jets, the diphoton mass (m(gamma gamma)) distribution is consistent with expected background. A 90(95)% C.L. upper limit on the cross section as a function of mass is calculated, ranging from 0.60(0.80) pb for m(gamma gamma) = 65 GeV/c^2 to 0.26(0.34) pb for m(gamma gamma) = 150 GeV/c^2, corresponding to a 95% C.L. lower limit on the mass of a bosonic Higgs of 78.5 GeV/c^2.Comment: 9 pages, 3 figures. Replacement has new H->gamma gamma branching ratios and corresponding new mass limit

    The Dijet Mass Spectrum and a Search for Quark Compositeness in bar{p}p Collisions at sqrt{s} = 1.8 TeV

    Get PDF
    Using the DZero detector at the 1.8 TeV pbarp Fermilab Tevatron collider, we have measured the inclusive dijet mass spectrum in the central pseudorapidity region |eta_jet| < 1.0 for dijet masses greater than 200 Gev/c^2. We have also measured the ratio of spectra sigma(|eta_jet| < 0.5)/sigma(0.5 < |eta_jet| < 1.0). The order alpha_s^3 QCD predictions are in good agreement with the data and we rule out models of quark compositeness with a contact interaction scale < 2.4 TeV at the 95% confidence level.Comment: 11 pages, 4 figures, 2 tables, submitted to Phys. Rev. Let

    Zgamma Production in pbarp Collisions at sqrt(s)=1.8 TeV and Limits on Anomalous ZZgamma and Zgammagamma Couplings

    Full text link
    We present a study of Z +gamma + X production in p-bar p collisions at sqrt{S}=1.8 TeV from 97 (87) pb^{-1} of data collected in the eegamma (mumugamma) decay channel with the D0 detector at Fermilab. The event yield and kinematic characteristics are consistent with the Standard Model predictions. We obtain limits on anomalous ZZgamma and Zgammagamma couplings for form factor scales Lambda = 500 GeV and Lambda = 750 GeV. Combining this analysis with our previous results yields 95% CL limits |h{Z}_{30}| < 0.36, |h{Z}_{40}| < 0.05, |h{gamma}_{30}| < 0.37, and |h{gamma}_{40}| < 0.05 for a form factor scale Lambda=750 GeV.Comment: 17 Pages including 2 Figures. Submitted to PR

    A Measurement of the W Boson Mass

    Full text link
    We report a measurement of the W boson mass based on an integrated luminosity of 82 pb1^{-1} from \ppbar collisions at s=1.8\sqrt{s}=1.8 TeV recorded in 1994--1995 by the \Dzero detector at the Fermilab Tevatron. We identify W bosons by their decays to eνe\nu and extract the mass by fitting the transverse mass spectrum from 28,323 W boson candidates. A sample of 3,563 dielectron events, mostly due to Z to ee decays, constrains models of W boson production and the detector. We measure \mw=80.44\pm0.10(stat)\pm0.07(syst)~GeV. By combining this measurement with our result from the 1992--1993 data set, we obtain \mw=80.43\pm0.11 GeV.Comment: 11 pages, 5 figure

    The role of liquid based cytology and ancillary techniques in the peritoneal washing analysis: our institutional experience

    Get PDF
    Background The cytological analysis of peritoneal effusions serves as a diagnostic and prognostic aid for either primary or metastatic diseases. Among the different cytological preparations, liquid based cytology (LBC) represents a feasible and reliable method ensuring also the application of ancillary techniques (i.e immunocytochemistry-ICC and molecular testing). Methods We recorded 10348 LBC peritoneal effusions between January 2000 and December 2014. They were classified as non-diagnostic (ND), negative for malignancy-NM, atypical-suspicious for malignancy-SM and positive for malignancy-PM. Results The cytological diagnosis included 218 ND, 9.035 NM, 213 SM and 882 PM. A total of 8048 (7228 NM, 115SM, 705 PM) cases with histological follow-up were included. Our NM included 21 malignant and 7207 benign histological diagnoses. Our 820 SMs+PMs were diagnosed as 107 unknown malignancies (30SM and 77PM), 691 metastatic lesions (81SM and 610PM), 9 lymphomas (2SM and 7PM), 9 mesotheliomas (1SM and 8SM), 4 sarcomas (1SM and 3PM). Primary gynecological cancers contributed with 64% of the cases. We documented 97.4% sensitivity, 99.9% specificity, 98% diagnostic accuracy, 99.7% negative predictive value (NPV) and 99.7% positive predictive value (PPV). Furthermore, the morphological diagnoses were supported by either 173 conclusive ICC results or 50 molecular analyses. Specifically the molecular testing was performed for the EGFR and KRAS mutational analysis based on the previous or contemporary diagnoses of Non Small Cell Lung Cancer (NSCLC) and colon carcinomas. We identified 10 EGFR in NSCCL and 7 KRAS mutations on LBC stored material. Conclusions Peritoneal cytology is an adjunctive tool in the surgical management of tumors mostly gynecological cancers. LBC maximizes the application of ancillary techniques such as ICC and molecular analysis with feasible diagnostic and predictive yields also in controversial cases.info:eu-repo/semantics/publishedVersio

    Goal-Directed Reasoning and Cooperation in Robots in Shared Workspaces: an Internal Simulation Based Neural Framework

    Get PDF
    From social dining in households to product assembly in manufacturing lines, goal-directed reasoning and cooperation with other agents in shared workspaces is a ubiquitous aspect of our day-to-day activities. Critical for such behaviours is the ability to spontaneously anticipate what is doable by oneself as well as the interacting partner based on the evolving environmental context and thereby exploit such information to engage in goal-oriented action sequences. In the setting of an industrial task where two robots are jointly assembling objects in a shared workspace, we describe a bioinspired neural architecture for goal-directed action planning based on coupled interactions between multiple internal models, primarily of the robot’s body and its peripersonal space. The internal models (of each robot’s body and peripersonal space) are learnt jointly through a process of sensorimotor exploration and then employed in a range of anticipations related to the feasibility and consequence of potential actions of two industrial robots in the context of a joint goal. The ensuing behaviours are demonstrated in a real-world industrial scenario where two robots are assembling industrial fuse-boxes from multiple constituent objects (fuses, fuse-stands) scattered randomly in their workspace. In a spatially unstructured and temporally evolving assembly scenario, the robots employ reward-based dynamics to plan and anticipate which objects to act on at what time instances so as to successfully complete as many assemblies as possible. The existing spatial setting fundamentally necessitates planning collision-free trajectories and avoiding potential collisions between the robots. Furthermore, an interesting scenario where the assembly goal is not realizable by either of the robots individually but only realizable if they meaningfully cooperate is used to demonstrate the interplay between perception, simulation of multiple internal models and the resulting complementary goal-directed actions of both robots. Finally, the proposed neural framework is benchmarked against a typically engineered solution to evaluate its performance in the assembly task. The framework provides a computational outlook to the emerging results from neurosciences related to the learning and use of body schema and peripersonal space for embodied simulation of action and prediction. While experiments reported here engage the architecture in a complex planning task specifically, the internal model based framework is domain-agnostic facilitating portability to several other tasks and platforms

    Reduction of HbA1c levels by fucoxanthin-enriched akamoku oil possibly involves the thrifty allele of uncoupling protein 1 (UCP1): a randomised controlled trial in normal-weight and obese Japanese adults

    Get PDF
    海藻由来のカロテノイド色素であるフコキサンチンの摂取はHbA1cを改善し,その効果は肥満や糖尿病発症のリスクが高いUCP1-3826A/G多型(G/G型)保有者において著しいことを示した

    Measurement of the W boson mass using electrons at large rapidities

    Get PDF
    We report a measurement of the W boson mass based on an integrated luminosity of 82/pb from p-pbar collisions at sqrt(s) = 1.8 TeV recorded in 1994-1995 by the D0 detector at the Fermilab Tevatron. We identify W bosons by their decays to e-nu, where the electron is detected in the forward calorimeters. We extract the mass by fitting the transverse mass and the electron and neutrino transverse momentum spectra of 11,089 W boson candidates. We measure Mw = 80.691 +- 0.227 GeV. By combining this measurement with our previously published central calorimeter results from data taken in 1992-1993 and 1994-1995, we obtain Mw = 80.482 +- 0.091 GeV
    corecore