487 research outputs found

    The diverse nature of island isolation and its effect on land bridge insular faunas

    Get PDF
    Aim: Isolation is a key factor in island biology. It is usually defined as the distance to the geographically nearest mainland, but many other definitions exist. We explored how testing different isolation indices affects the inference of impacts of isolation on faunal characteristics. We focused on land bridge islands and compared the relationships of many spatial and temporal (i.e., through time) isolation indices with community‐, population‐ and individual‐level characteristics (species richness, population density and body size, respectively). Location: Aegean Sea islands, Greece. Time period: Current. Taxon: Many animal taxa. Methods: We estimated 21 isolation indices for 205 islands and recorded species richness data for 15 taxa (invertebrates and vertebrates). We obtained body size data for seven lizard species and population density data for three. We explored how well indices predict each characteristic, in each taxon, by conducting a series of ordinary least squares regressions (controlling for island area when needed) and a meta‐analysis. Results: Isolation was significantly (and negatively) associated with species richness in 10 of 15 taxa. It was significantly (and positively) associated with body size in only one of seven species and was not associated with population density. The effect of isolation on species richness was much weaker than that of island area, regardless of the index tested. Spatial indices generally out‐performed temporal indices, and indices directly related to the mainland out‐performed those related mainly to neighbouring islands. No index was universally superior to others, including the distance to the geographically nearest mainland. Main conclusions: The choice of index can alter our perception of the impacts of isolation on biological patterns. The nearly automatic, ubiquitous use of distance to the geographically nearest mainland misrepresents the complexity of the effects of isolation. We recommend the simultaneous testing of several indices that represent different aspects of isolation, in order to produce more constructive and thorough investigations and avoid imprecise inference

    Urban affinity and its associated traits: A global analysis of bats

    Get PDF
    Urbanization is a major contributor to the loss of biodiversity. Its rapid progress is mostly at the expense of natural ecosystems and the species inhabiting them. While some species can adjust quickly and thrive in cities, many others cannot. To support biodiversity conservation and guide management decisions in urban areas, it is important to find robust methods to estimate the urban affinity of species (i.e. their tendency to live in urban areas) and understand how it is associated with their traits. Since previous studies mainly relied on discrete classifications of species' urban affinity, often involving inconsistent assessments or variable parameters, their results were difficult to compare. To address this issue, we developed and evaluated a set of continuous indices that quantify species' urban affinity based on publicly available occurrence data. We investigated the extent to which a species' position along the urban affinity gradient depends on the chosen index and how this choice affects inferences about the relationship between urban affinity and a set of morphological, sensory and functional traits. While these indices are applicable to a wide range of taxonomic groups, we examined their performance using a global set of 356 bat species. As bats vary in sensitivity to anthropogenic disturbances, they provide an interesting case study. We found that different types of indices resulted in different rankings of species on the urban affinity spectrum, but this had little effect on the association of traits with urban affinity. Our results suggest that bat species predisposed to urban life are characterized by low echolocation call frequencies, relatively long call durations, small body size and flexibility in the selection of the roost type. We conclude that simple indices are appropriate and practical, and propose to apply them to more taxa to improve our understanding of how urbanization favours or filters species with particular traits

    Pentosan polysulfate promotes proliferation and chondrogenic differentiation of adult human bone marrow-derived mesenchymal precursor cells

    Get PDF
    Extent: 17p.Introduction: This study was undertaken to determine whether the anti-osteoarthritis drug pentosan polysulfate (PPS) influenced mesenchymal precursor cell (MPC) proliferation and differentiation. Methods: Human MPCs were maintained in monolayer, pellet or micromass cultures (MMC) for up to 10 days with PPS at concentrations of 0 to 20 μg/ml. MPC viability and proliferation was assessed using the WST-1 assay and 3H-thymidine incorporation into DNA, while apoptosis was monitored by flow cytometry. Proteoglycan (PG) biosynthesis was determined by 35SO4 2- incorporation and staining with Alcian blue. Proteoglycan and collagen type I and collagen type II deposition in pellet cultures was also examined by Toluidine blue and immunohistochemical staining, respectively. The production of hyaluronan (HA) by MPCs in MMC was assessed by ELISA. The relative outcome of PPS, HA, heparin or dextran sulfate (DS) on PG synthesis was compared in 5-day MMC. Gene expression of MPCs in 7-day and 10-day MMC was examined using real-time PCR. MPC differentiation was investigated by co-culturing with PPS in osteogenic or adipogenic inductive culture media for 28 days. Results: Significant MPC proliferation was evident by day 3 at PPS concentrations of 1 to 5 μg/ml (P < 0.01). In the presence of 1 to 10 μg/ml PPS, a 38% reduction in IL-4/IFNγ-induced MPC apoptosis was observed. In 5-day MMC, 130% stimulation of PG synthesis occurred at 2.5 μg/ml PPS (P < 0.0001), while 5.0 μg/ml PPS achieved maximal stimulation in the 7-day and 10-day cultures (P < 0.05). HA and DS at ≥ 5 μg/ml inhibited PG synthesis (P < 0.05) in 5-day MMC. Collagen type II deposition by MMC was significant at ≥ 0.5 μg/ml PPS (P < 0.001 to 0.05). In MPC-PPS pellet cultures, more PG, collagen type II but less collagen type I was deposited than in controls. Real-time PCR results were consistent with the protein data. At 5 and 10 μg/ml PPS, MPC osteogenic differentiation was suppressed (P < 0.01). Conclusions: This is the first study to demonstrate that PPS promotes MPC proliferation and chondrogenesis, offering new strategies for cartilage regeneration and repair in osteoarthritic joints.Peter Ghosh, Jiehua Wu, Susan Shimmon, Andrew CW Zannettino, Stan Gronthos and Silviu Itesc

    Sex determination, longevity, and the birth and death of reptilian species

    Get PDF
    Vertebrate sex-determining mechanisms (SDMs) are triggered by the genotype (GSD), by temperature (TSD), or occasionally, by both. The causes and consequences of SDM diversity remain enigmatic. Theory predicts SDM effects on species diversification, and life-span effects on SDM evolutionary turnover. Yet, evidence is conflicting in clades with labile SDMs, such as reptiles. Here, we investigate whether SDM is associated with diversification in turtles and lizards, and whether alterative factors, such as lifespan\u27s effect on transition rates, could explain the relative prevalence of SDMs in turtles and lizards (including and excluding snakes). We assembled a comprehensive dataset of SDM states for squamates and turtles and leveraged large phylogenies for these two groups. We found no evidence that SDMs affect turtle, squamate, or lizard diversification. However, SDM transition rates differ between groups. In lizards TSD-to-GSD surpass GSD-to-TSD transitions, explaining the predominance of GSD lizards in nature. SDM transitions are fewer in turtles and the rates are similar to each other (TSD-to-GSD equals GSD-to-TSD), which, coupled with TSD ancestry, could explain TSD\u27s predominance in turtles. These contrasting patterns can be explained by differences in life history. Namely, our data support the notion that in general, shorter lizard lifespan renders TSD detrimental favoring GSD evolution in squamates, whereas turtle longevity permits TSD retention. Thus, based on the macro-evolutionary evidence we uncovered, we hypothesize that turtles and lizards followed different evolutionary trajectories with respect to SDM, likely mediated by differences in lifespan. Combined, our findings revealed a complex evolutionary interplay between SDMs and life histories that warrants further research that should make use of expanded datasets on unexamined taxa to enable more conclusive analyses

    Different solutions lead to similar life history traits across the great divides of the amniote tree of life

    Get PDF
    Amniote vertebrates share a suite of extra-embryonic membranes that distinguish them from anamniotes. Other than that, however, their reproductive characteristics could not be more different. They differ in basic ectothermic vs endothermic physiology, in that two clades evolved powered flight, and one clade evolved a protective shell. In terms of reproductive strategies, some produce eggs and others give birth to live young, at various degrees of development. Crucially, endotherms provide lengthy parental care, including thermal and food provisioning-whereas ectotherms seldom do. These differences could be expected to manifest themselves in major differences between clades in quantitative reproductive traits. We review the reproductive characteristics, and the distributions of brood sizes, breeding frequencies, offspring sizes and their derivatives (yearly fecundity and biomass production rates) of the four major amniote clades (mammals, birds, turtles and squamates), and several major subclades (birds: Palaeognathae, Galloanserae, Neoaves; mammals: Metatheria and Eutheria). While there are differences between these clades in some of these traits, they generally show similar ranges, distribution shapes and central tendencies across birds, placental mammals and squamates. Marsupials and turtles, however, differ in having smaller offspring, a strategy which subsequently influences other traits

    Down-regulation of Plasminogen Activator Inhibitor 1 Expression Promotes Myocardial Neovascularization by Bone Marrow Progenitors

    Get PDF
    Human adult bone marrow–derived endothelial progenitors, or angioblasts, induce neovascularization of infarcted myocardium via mechanisms involving both cell surface urokinase-type plasminogen activator, and interactions between β integrins and tissue vitronectin. Because each of these processes is regulated by plasminogen activator inhibitor (PAI)-1, we selectively down-regulated PAI-1 mRNA in the adult heart to examine the effects on postinfarct neovascularization and myocardial function. Sequence-specific catalytic DNA enzymes inhibited rat PAI-1 mRNA and protein expression in peri-infarct endothelium within 48 h of administration, and maintained down-regulation for at least 2 wk. PAI-1 inhibition enhanced vitronectin-dependent transendothelial migration of human bone marrow–derived CD34+ cells, and resulted in a striking augmentation of angioblast-dependent neovascularization. Development of large, thin-walled vessels at the peri-infarct region was accompanied by induction of proliferation and regeneration of endogenous cardiomyocytes and functional cardiac recovery. These results identify a causal relationship between elevated PAI-1 levels and poor outcome in patients with myocardial infarction through mechanisms that directly inhibit bone marrow–dependent neovascularization. Strategies that reduce myocardial PAI-1 expression appear capable of enhancing cardiac neovascularization, regeneration, and functional recovery after ischemic insult

    The Ecologist's Career Compass: A game to explore career paths

    Get PDF
    One of the most challenging endeavors for students is choosing a career path that best fits their interests, wills and skills, and setting their professional goals accordingly. Such decisions are often made from within the culture of academia, in which mentors and peers are mainly familiar with the academic job market and lack the knowledge necessary to consult about other types of careers. We aimed to address this gap for ecology and related fields by creating an engaging and effective tool to help students and professionals to familiarize themselves with the diversity of potential career paths available to ecologists. The tool is an applied card game – the Ecologist's Career Compass – which is provided here freely. The game is played as a trump card game and includes 33 cards, each representing a combination of one of four job-market sectors and one of nine types of positions. Each card indicates the level of seven skill categories required to likely be hired and succeed in the focal position at the focal sector, as well as more specific examples for typical jobs in the focal combination. The information in the game largely relies on input from a global survey we conducted among 315 ecologists from 35 countries. While the challenges faced by early-career ecologists in developing their professional path are substantial and diverse, this game can assist in gaining a broad comparative overview of the whole ecology job market and the skills required to likely excel in different paths. We hope this applied game will act as a conversation starter about the diversity of aspirations and opportunities in ecology classrooms and labs.Alexander von Humboldt‐Stiftung http://dx.doi.org/10.13039/100005156Deutsche Bundesstiftung Umwelt http://dx.doi.org/10.13039/100007636Peer Reviewe

    Inconsistent patterns of body size evolution in co-occurring island reptiles

    Get PDF
    Aim Animal body sizes are often remarkably variable across islands, but despite much research we still have a poor understanding of both the patterns and the drivers of body size evolution. Theory predicts that interspecific competition and predation pressures are relaxed on small, remote islands, and that these conditions promote body size evolution. We studied body size variation across multiple insular populations of 16 reptile species co‐occurring in the same archipelago and tested which island characteristics primarily drive body size evolution, the nature of the common patterns, and whether co‐occurring species respond in a similar manner to insular conditions. Location Aegean Sea islands. Time period 1984–2016. Major taxa studied Reptiles. Methods We combined fieldwork, museum measurements and a comprehensive literature survey to collect data on nearly 10,000 individuals, representing eight lizard and eight snake species across 273 islands. We also quantified a large array of predictors to assess directly the effects of island area, isolation (both spatial and temporal), predation and interspecific competition on body size evolution. We used linear models and meta‐analyses to determine which predictors are informative for all reptiles, for lizards and snakes separately, and for each species. Results Body size varies with different predictors across the species we studied, and patterns differ within families and between lizards and snakes. Each predictor influenced body size in at least one species, but no general trend was recovered. As a group, lizards are hardly affected by any of the predictors we tested, whereas snake size generally increases with area and with competitor and predator richness, and decreases with isolation. Main conclusions No factor emerges as a predominant driver of Aegean reptile sizes. This contradicts theories of general body size evolutionary trajectories on islands. We conclude that overarching generalizations oversimplify patterns and processes of reptile body size evolution on islands. Instead, species’ autecology and island particularities interact to drive the course of size evolution

    Clutch size variability in an ostensibly fix-clutched lizard : effects of insularity on a Mediterranean gecko

    Get PDF
    The island syndrome describes the evolution of slow life history traits in insular environments. Animals are thought to evolve smaller clutches of larger offspring on islands in response to release from predation pressure and interspecific competition, and the resulting increases in population density and intraspecific competition. These forces become more pronounced with diminishing island size, and life histories are thus expected to become slowest on small, isolated islands. We measured clutch sizes in 12 insular populations of Mediodactylus kotschyi, a small gecko from the Cyclades Archipelago, a set of land-bridge islands in the Aegean Sea (Greece). We analyse variation in clutch size in relation to island area, island age, maternal body size, the presence of putative competitors and nesting seabirds (which increase resource abundance in the form of marine subsidies), and richness of predators. Clutch size of M. kotschyi decreases with increasing island area, in departure from classic island syndrome predictions, suggesting the evolution of faster life histories on smaller islands. There are no relationships between clutch size and island age, maternal size, the presence of competitors or predator richness. Instead, larger clutches on small islands could simply reflect the beneficial effect of marine subsidies derived from resident seabird colonies. Indeed, populations of M. kotschyi on islands with nesting seabirds have clutch sizes 30.9 % larger (1.82 vs. 1.39 eggs) than populations on islands without nesting seabirds. Thus, our data suggest that bottom-up effects of marine subsidies may supersede the expression of a simple island syndrome in the Aegean M. kotschyi

    Overcoming biodiversity blindness: Secondary data in primary citizen science observations

    Get PDF
    1. In the face of the global biodiversity crisis, collecting comprehensive data and making the best use of existing data are becoming increasingly important to understand patterns and drivers of environmental and biological phenomena at different scales. 2. Here we address the concept of secondary data, which refers to additional information unintentionally captured in species records, especially in multimedia-based citizen science reports. We argue that secondary data can provide a wealth of ecologically relevant information, the utilisation of which can enhance our understanding of traits and interactions among individual organisms, populations and biodiversity dynamics in general. 3. We explore the possibilities offered by secondary data and describe their main types and sources. An overview of research in this field provides a synthesis of the results already achieved using secondary data and different approaches to information extraction. 4. Finally, we discuss challenges to the widespread use of secondary data, such as biases, licensing issues, use of metadata and lack of awareness of this trove of data due to a missing common terminology, as well as possible solutions to overcome these barriers. 5. Although the exploration and use of secondary data is only emerging, the many opportunities identified show how these data can enrich biodiversity research and monitoring
    corecore