377 research outputs found

    Hierarchically Porous ZSM-5 Synthesized by Nonionic- and Cationic-Templating Routes and Their Catalytic Activity in Liquid-Phase Esterification

    Get PDF
    Hierarchically porous MFI zeolites (ZSM-5) have been synthesized by hydrothermal treatment in the presence of trialkoxysilylated-derivatives of nonionic poly(oxyethylene) alkyl ether or alkyl quaternary ammonium cation as mesopore-generating agent, along with tetrapropylammonium cation as zeolite structure-directing agent. Powder X-ray diffraction revealed that zeolites have been crystallized, and scanning electron microscopy showed rugged surface morphology that was quite different from conventional ZSM-5. The mesoporosity was confirmed by nitrogen adsorption-desorption measurement showing type IV isotherms with narrow distribution of mesopore diameters. The catalytic activity of these mesoporous ZSM-5 was tested in liquid-phase esterification of benzyl alcohol with hexanoic acid. The conversion of benzyl alcohol on mesoporous ZSM-5 prepared via cationic-templating route was almost 100%, being much higher than on mesoporous ZSM-5 prepared with silylated nonionic surfactant as well as on conventional ZSM-5 with no mesopores. The presence of Brønsted acid sites, together with the mesopores, was responsible for this catalytic conversion, as confirmed by pyridine adsorption monitored by in situ infrared and 27Al magic angle spinning nuclear magnetic resonance spectroscopy

    Distorted wave impulse approximation analysis for spin observables in nucleon quasi-elastic scattering and enhancement of the spin-longitudinal response

    Full text link
    We present a formalism of distorted wave impulse approximation (DWIA) for analyzing spin observables in nucleon inelastic and charge exchange reactions leading to the continuum. It utilizes response functions calculated by the continuum random phase approximation (RPA), which include the effective mass, the spreading widths and the \Delta degrees of freedom. The Fermi motion is treated by the optimal factorization, and the non-locality of the nucleon-nucleon t-matrix by an averaged reaction plane approximation. By using the formalism we calculated the spin-longitudinal and the spin-transverse cross sections, ID_q and ID_p, of 12C, 40Ca (\vec{p},\vec{n}) at 494 and 346 MeV. The calculation reasonably reproduced the observed ID_q, which is consistent with the predicted enhancement of the spin-longitudinal response function R_L. However, the observed ID_p is much larger than the calculated one, which was consistent with neither the predicted quenching nor the spin-transverse response function R_T obtained by the (e,e') scattering. The Landau-Migdal parameter g'_N\Delta for the N\Delta transition interaction and the effective mass at the nuclear center m^*(r=0) are treated as adjustable parameters. The present analysis indicates that the smaller g'_{N\Delta}(\approx 0.3) and m^*(0) \approx 0.7 m are preferable. We also investigate the validity of the plane wave impulse approximation (PWIA) with the effective nucleon number approximation for the absorption, by means of which R_L and R_T have conventionally been extracted.Comment: RevTex 3, 29 pages, 2 tables, 8 figure

    Experimental determination and thermodynamic calculation of the phase equilibria in the Cu-In-Sn system

    Get PDF
    The phase equilibria of the Cu-In-Sn system were investigated by means of the diffusion couple method, differential scanning calorimetry (DSC) and metallography. The isothermal sections at 110-900 degreesC, as well as vertical sections at 10wt.%Cu-70wt.%Cu were determined. It was found that there are large solubilities of In in the epsilon (Cu3Sn), delta (Cu41Sn11), and eta phases in the Cu-Sn system, and large solubilities of Sn in the gamma, eta, and delta (Cu7In3) phases in the Cu-In system. The eta phase was found to continuously form from the Cu-In side to the Cu-Sn side, and a ternary compound (Cu2In3Sn) was found to exist at 110 degreesC. Thermodynamic assessment of the Cu-In-Sn system was also carried out based on experimental data of activity and phase equilibria using the CALPHAD method, in which the Gibbs energies of the liquid, fcc and bcc phases are described by the subregular solution model and that of compounds, including two ternary compounds, are represented by the sublattice model. The thermodynamic parameters for describing the phase equilibria were optimized, and agreement between the calculated and experimental results was obtained

    Long noncoding RNAs in Brassica rapa L. following vernalization

    Get PDF
    © 2019, The Author(s). Brassica rapa L. is an important agricultural crop that requires a period of prolonged cold for flowering. This process is known as vernalization. Studies have shown that long noncoding RNAs (lncRNAs) play important roles in abiotic stress responses and several cold-responsive noncoding RNAs have been suggested to be involved in vernalization. We examined the transcriptome of the Chinese cabbage inbred line (B. rapa L. var. pekinensis) RJKB-T24, and identified 1,444 long intergenic noncoding RNAs (lincRNAs), 551 natural antisense transcripts (NATs), and 93 intronic noncoding RNAs (incRNAs); 549 of the 2,088 lncRNAs significantly altered their expression in response to four weeks of cold treatment. Most differentially expressed lncRNAs did not lead to a change of expression levels in mRNAs covering or near lncRNAs, suggesting that the transcriptional responses to four weeks of cold treatment in lncRNA and mRNA are independent. However, some differentially expressed mRNAs had NATs with expression altered in the same direction. These genes were categorized as having an abiotic stress response, suggesting that the paired-expression may play a role in the transcriptional response to vernalization or cold treatment. We also identified short-term cold treatment induced NATs in BrFLC and BrMAF genes, which are involved in vernalization. The lncRNAs we identified differed from those reported in Arabidopsis thaliana, suggesting the role of lncRNAs in vernalization differ between these two species

    The histone modification H3 lysine 27 tri-methylation has conserved gene regulatory roles in the triplicated genome of Brassica rapa L

    Get PDF
    © The Author(s) 2019. Published by Oxford University Press on behalf of Kazusa DNA Research Institute. Brassica rapa L. is an important vegetable and oilseed crop. We investigated the distribution of the histone mark tri-methylation of H3K27 (H3K27me3) in B. rapa and its role in the control of gene expression at two stages of development (2-day cotyledons and 14-day leaves) and among paralogs in the triplicated genome. H3K27me3 has a similar distribution in two inbred lines, while there was variation of H3K27me3 sites between tissues. Sites that are specific to 2-day cotyledons have increased transcriptional activity, and low levels of H3K27me3 in the gene body region. In 14-day leaves, levels of H3K27me3 were associated with decreased gene expression. In the triplicated genome, H3K27me3 is associated with paralogs that have tissue-specific expression. Even though B. rapa and Arabidopsis thaliana are not closely related within the Brassicaceae, there is conservation of H3K27me3-marked sites in the two species. Both B. rapa and A. thaliana require vernalization for floral initiation with FLC being the major controlling locus. In all four BrFLC paralogs, low-temperature treatment increases H3K27me3 at the proximal nucleation site reducing BrFLC expression. Following return to normal temperature growth conditions, H3K27me3 spreads along all four BrFLC paralogs providing stable repression of the gene

    The role of FRIGIDA and FLOWERING LOCUS C genes in flowering time of Brassica rapa leafy vegetables

    Get PDF
    © 2019, The Author(s). There is a wide variation of flowering time among lines of Brassica rapa L. Most B. rapa leafy (Chinese cabbage etc.) or root (turnip) vegetables require prolonged cold exposure for flowering, known as vernalization. Premature bolting caused by low temperature leads to a reduction in the yield/quality of these B. rapa vegetables. Therefore, high bolting resistance is an important breeding trait, and understanding the molecular mechanism of vernalization is necessary to achieve this goal. In this study, we demonstrated that BrFRIb functions as an activator of BrFLC in B. rapa. We showed a positive correlation between the steady state expression levels of the sum of the BrFLC paralogs and the days to flowering after four weeks of cold treatment, suggesting that this is an indicator of the vernalization requirement. We indicate that BrFLCs are repressed by the accumulation of H3K27me3 and that the spreading of H3K27me3 promotes stable FLC repression. However, there was no clear relationship between the level of H3K27me3 in the BrFLC and the vernalization requirement. We also showed that if there was a high vernalization requirement, the rate of repression of BrFLC1 expression following prolonged cold treatments was lower
    corecore