4,617 research outputs found

    Dirac eigenvalues and eigenvectors at finite temperature

    Full text link
    We investigate the eigenvalues and eigenvectors of the staggered Dirac operator in the vicinity of the chiral phase transition of quenched SU(3) lattice gauge theory. We consider both the global features of the spectrum and the local correlations. In the chirally symmetric phase, the local correlations in the bulk of the spectrum are still described by random matrix theory, and we investigate the dependence of the bulk Thouless energy on the simulation parameters. At and above the critical point, the properties of the low-lying Dirac eigenvalues depend on the Z3Z_3-phase of the Polyakov loop. In the real phase, they are no longer described by chiral random matrix theory. We also investigate the localization properties of the Dirac eigenvectors in the different Z3Z_3-phases.Comment: Lattice 2000 (Finite Temperature), 5 page

    Electronic structure of superconducting graphite intercalate compounds: The role of the interlayer state

    Full text link
    Although not an intrinsic superconductor, it has been long--known that, when intercalated with certain dopants, graphite is capable of exhibiting superconductivity. Of the family of graphite--based materials which are known to superconduct, perhaps the most well--studied are the alkali metal--graphite intercalation compounds (GIC) and, of these, the most easily fabricated is the C8{}_8K system which exhibits a transition temperature Tc0.14\bm{T_c\simeq 0.14} K. By increasing the alkali metal concentration (through high pressure fabrication techniques), the transition temperature has been shown to increase to as much as 5\bm 5 K in C2{}_2Na. Lately, in an important recent development, Weller \emph{et al.} have shown that, at ambient conditions, the intercalated compounds \cyb and \cca exhibit superconductivity with transition temperatures Tc6.5\bm{T_c\simeq 6.5} K and 11.5\bm{11.5} K respectively, in excess of that presently reported for other graphite--based compounds. We explore the architecture of the states near the Fermi level and identify characteristics of the electronic band structure generic to GICs. As expected, we find that charge transfer from the intercalant atoms to the graphene sheets results in the occupation of the π\bm\pi--bands. Yet, remarkably, in all those -- and only those -- compounds that superconduct, we find that an interlayer state, which is well separated from the carbon sheets, also becomes occupied. We show that the energy of the interlayer band is controlled by a combination of its occupancy and the separation between the carbon layers.Comment: 4 Figures. Please see accompanying experimental manuscript "Superconductivity in the Intercalated Graphite Compounds C6Yb and C6Ca" by Weller et a

    Representing complex data using localized principal components with application to astronomical data

    Full text link
    Often the relation between the variables constituting a multivariate data space might be characterized by one or more of the terms: ``nonlinear'', ``branched'', ``disconnected'', ``bended'', ``curved'', ``heterogeneous'', or, more general, ``complex''. In these cases, simple principal component analysis (PCA) as a tool for dimension reduction can fail badly. Of the many alternative approaches proposed so far, local approximations of PCA are among the most promising. This paper will give a short review of localized versions of PCA, focusing on local principal curves and local partitioning algorithms. Furthermore we discuss projections other than the local principal components. When performing local dimension reduction for regression or classification problems it is important to focus not only on the manifold structure of the covariates, but also on the response variable(s). Local principal components only achieve the former, whereas localized regression approaches concentrate on the latter. Local projection directions derived from the partial least squares (PLS) algorithm offer an interesting trade-off between these two objectives. We apply these methods to several real data sets. In particular, we consider simulated astrophysical data from the future Galactic survey mission Gaia.Comment: 25 pages. In "Principal Manifolds for Data Visualization and Dimension Reduction", A. Gorban, B. Kegl, D. Wunsch, and A. Zinovyev (eds), Lecture Notes in Computational Science and Engineering, Springer, 2007, pp. 180--204, http://www.springer.com/dal/home/generic/search/results?SGWID=1-40109-22-173750210-

    On relativization of the Sommerfeld-Gamow-Sakharov factor

    Full text link
    The Sommerfeld-Gamow-Sakharov factor is considered for the general case of arbitrary masses and energies. It is shown that the scalar triangular one-loop diagram gives the Coulomb singularity in radiative corrections at the threshold. The singular part of the correction is factorized at the complete Born cross section regardless of its partial wave decomposition. Different approaches to generalize the factor are discussed.Comment: 9 pages, 4 figures; references and discussion are extende

    Is There A String Theory Landscape

    Full text link
    We examine recent claims of a large set of flux compactification solutions of string theory. We conclude that the arguments for AdS solutions are plausible. The analysis of meta-stable dS solutions inevitably leads to situations where long distance effective field theory breaks down. We then examine whether these solutions are likely to lead to a description of the real world. We conclude that one must invoke a strong version of the anthropic principle. We explain why it is likely that this leads to a prediction of low energy supersymmetry breaking, but that many features of anthropically selected flux compactifications are likely to disagree with experiment.Comment: 39 pages, Latex, ``Terminology surrounding the anthropic principle revised to conform with accepted usage. More history of the anthropic principle included. Various references added.

    The projection score - an evaluation criterion for variable subset selection in PCA visualization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In many scientific domains, it is becoming increasingly common to collect high-dimensional data sets, often with an exploratory aim, to generate new and relevant hypotheses. The exploratory perspective often makes statistically guided visualization methods, such as Principal Component Analysis (PCA), the methods of choice. However, the clarity of the obtained visualizations, and thereby the potential to use them to formulate relevant hypotheses, may be confounded by the presence of the many non-informative variables. For microarray data, more easily interpretable visualizations are often obtained by filtering the variable set, for example by removing the variables with the smallest variances or by only including the variables most highly related to a specific response. The resulting visualization may depend heavily on the inclusion criterion, that is, effectively the number of retained variables. To our knowledge, there exists no objective method for determining the optimal inclusion criterion in the context of visualization.</p> <p>Results</p> <p>We present the projection score, which is a straightforward, intuitively appealing measure of the informativeness of a variable subset with respect to PCA visualization. This measure can be universally applied to find suitable inclusion criteria for any type of variable filtering. We apply the presented measure to find optimal variable subsets for different filtering methods in both microarray data sets and synthetic data sets. We note also that the projection score can be applied in general contexts, to compare the informativeness of any variable subsets with respect to visualization by PCA.</p> <p>Conclusions</p> <p>We conclude that the projection score provides an easily interpretable and universally applicable measure of the informativeness of a variable subset with respect to visualization by PCA, that can be used to systematically find the most interpretable PCA visualization in practical exploratory analysis.</p

    Short and canonical GRBs

    Get PDF
    Within the "fireshell" model for the Gamma-Ray Bursts (GRBs) we define a "canonical GRB" light curve with two sharply different components: the Proper-GRB (P-GRB), emitted when the optically thick fireshell of electron-positron plasma originating the phenomenon reaches transparency, and the afterglow, emitted due to the collision between the remaining optically thin fireshell and the CircumBurst Medium (CBM). We outline our "canonical GRB" scenario, with a special emphasis on the discrimination between "genuine" and "fake" short GRBs.Comment: 4 pages, 3 figures, in the Proceedings of the "Gamma Ray Bursts 2007" meeting, November 5-9, 2007, Santa Fe, New Mexico, US

    Controlling the quantum dynamics of a mesoscopic spin bath in diamond

    Get PDF
    Understanding and mitigating decoherence is a key challenge for quantum science and technology. The main source of decoherence for solid-state spin systems is the uncontrolled spin bath environment. Here, we demonstrate quantum control of a mesoscopic spin bath in diamond at room temperature that is composed of electron spins of substitutional nitrogen impurities. The resulting spin bath dynamics are probed using a single nitrogen-vacancy (NV) centre electron spin as a magnetic field sensor. We exploit the spin bath control to dynamically suppress dephasing of the NV spin by the spin bath. Furthermore, by combining spin bath control with dynamical decoupling, we directly measure the coherence and temporal correlations of different groups of bath spins. These results uncover a new arena for fundamental studies on decoherence and enable novel avenues for spin-based magnetometry and quantum information processing

    The REDUCE FMR Trial: A Randomized Sham-Controlled Study of Percutaneous Mitral Annuloplasty in Functional Mitral Regurgitation

    Get PDF
    Objectives This study sought to evaluate the effects of the Carillon device on mitral regurgitation severity and left ventricular remodeling. Background Functional mitral regurgitation (FMR) complicates heart failure with reduced ejection fraction and is associated with a poor prognosis. Methods In this blinded, randomized, proof-of-concept, sham-controlled trial, 120 patients receiving optimal heart failure medical therapy were assigned to a coronary sinus-based mitral annular reduction approach for FMR or sham. The pre-specified primary endpoint was change in mitral regurgitant volume at 12 months, measured by quantitative echocardiography according to an intention-to-treat analysis. Results Patients (69.8 ± 9.5 years of age) were randomized to either the treatment (n = 87) or the sham-controlled (n = 33) arm. There were no significant differences in baseline characteristics between the groups. In the treatment group, 73 of 87 (84%) had the device implanted. The primary endpoint was met, with a statistically significant reduction in mitral regurgitant volume in the treatment group compared to the control group (decrease of 7.1 ml/beat [95% confidence interval [CI]: −11.7 to −2.5] vs. an increase of 3.3 ml/beat [95% CI: −6.0 to 12.6], respectively; p = 0.049). Additionally, there was a significant reduction in left ventricular volumes in patients receiving the device versus those in the control group (left ventricular end-diastolic volume decrease of 10.4 ml [95% CI: −18.5 to −2.4] vs. an increase of 6.5 ml [95% CI: −5.1 to 18.2]; p = 0.03 and left ventricular end-systolic volume decrease of 6.2 ml [95% CI: −12.8 to 0.4] vs. an increase of 6.1 ml [95% CI: −1.42 to 13.6]; p = 0.04). Conclusions The Carillon device significantly reduced mitral regurgitant volume and left ventricular volumes in symptomatic patients with functional mitral regurgitation receiving optimal medical therapy. (Carillon Mitral Contour System for Reducing Functional Mitral Regurgitation [REDUCE FMR]; NCT02325830
    corecore