28 research outputs found

    Retrospective analysis of antimicrobial resistance and bacterial spectrum of infection in Gabon, Central Africa

    Full text link
    Background: Physicians depend on reliable information on the local epidemiology of infection and antibiotic resistance rates to guide empiric treatment in critically ill patients. As these data are scarce for Central Africa, we performed a retrospective analysis of microbiological findings from a secondary care hospital in Gabon. Methods: Microbiological reports from 2009 to 2012 were used to assess the non-susceptibility rates of the three most common isolates from six major types of infections (bloodstream, ear-eye-nose-throat, surgical site, skin and soft tissue, urinary tract and wound infection). Results: A high diversity of pathogens was found, but Staphylococcus aureus was predominant in the majority of infections. Overall, the three most prevalent pathogens in children were S. aureus (33.7%), Streptococcus pyogenes (8.1%) and Escherichia coli (4.5%) and in adults S. aureus (23.5%), E. coli (15.1%) and Klebsiella pneumoniae (7.4%). In total, 5.8% (n = 19) of all S. aureus isolates were methicillin resistant. The proportion of extended-spectrum beta-lactamase (ESBL) producing Enterobacteriaceae was 15.4% (n = 78), 49.4% of all K. pneumoniae were ESBL-producer (n = 42). Conclusion: The high diversity of potential pathogens and high resistance rates in Gram-negative bacteria challenge a rational empiric use of antibiotics. Countrywide continuous sentinel surveillance is therefore urgently needed.<br

    A Randomized Controlled Phase Ib Trial of the Malaria Vaccine Candidate GMZ2 in African Children

    Get PDF
    BACKGROUND: GMZ2 is a fusion protein of Plasmodium falciparum merozoite surface protein 3 (MSP3) and glutamate rich protein (GLURP) that mediates an immune response against the blood stage of the parasite. Two previous phase I clinical trials, one in naïve European adults and one in malaria-exposed Gabonese adults showed that GMZ2 was well tolerated and immunogenic. Here, we present data on safety and immunogenicity of GMZ2 in one to five year old Gabonese children, a target population for future malaria vaccine efficacy trials. METHODOLOGY/PRINCIPAL FINDINGS: Thirty children one to five years of age were randomized to receive three doses of either 30 µg or 100 µg of GMZ2, or rabies vaccine. GMZ2, adjuvanted in aluminum hydroxide, was administered on Days 0, 28 and 56. All participants received a full course of their respective vaccination and were followed up for one year. Both 30 µg and 100 µg GMZ2 vaccine doses were well tolerated and induced antibodies and memory B-cells against GMZ2 as well as its antigenic constituents MSP3 and GLURP. After three doses of vaccine, the geometric mean concentration of antibodies to GMZ2 was 19-fold (95%CI: 11,34) higher in the 30 µg GMZ2 group than in the rabies vaccine controls, and 16-fold (7,36) higher in the 100 µg GMZ2 group than the rabies group. Geometric mean concentration of antibodies to MSP3 was 2.7-fold (1.6,4.6) higher in the 30 µg group than in the rabies group and 3.8-fold (1.5,9.6) higher in the 100 µg group. Memory B-cells against GMZ2 developed in both GMZ2 vaccinated groups. CONCLUSIONS/SIGNIFICANCE: Both 30 µg as well as 100 µg intramuscular GMZ2 are immunogenic, well tolerated, and safe in young, malaria-exposed Gabonese children. This result confirms previous findings in naïve and malaria-exposed adults and supports further clinical development of GMZ2. TRIAL REGISTRATION: ClinicalTrials.gov NCT00703066

    Evaluation of the Safety and Immunogenicity of the RTS,S/AS01E Malaria Candidate Vaccine When Integrated in the Expanded Program of Immunization

    Get PDF
    Background. The RTS,S/AS01E malaria candidate vaccine is being developed for immunization of African infants through the Expanded Program of Immunization (EPI). Methods. This phase 2, randomized, open, controlled trial conducted in Ghana, Tanzania, and Gabon evaluated the safety and immunogenicity of RTS,S/AS01E when coadministered with EPI vaccines. Five hundred eleven infants were randomized to receive RTS,S/AS01E at 0, 1, and 2 months (in 3 doses with diphtheria, tetanus, and wholecell pertussis conjugate [DTPw]; hepatitis B [HepB]; Haemophilus influenzae type b [Hib]; and oral polio vaccine [OPV]), RTS,S/AS01E at 0, 1, and 7 months (2 doses with DTPwHepB/Hib+OPV and 1 dose with measles and yellow fever), or EPI vaccines only. Results. The occurrences of serious adverse events were balanced across groups; none were vaccine-related. One child from the control group died. Mild to moderate fever and diaper dermatitis occurred more frequently in the RTS,S/AS01E coadministration groups. RTS,S/AS01E generated high anti-circumsporozoite protein and anti- hepatitis B surface antigen antibody levels. Regarding EPI vaccine responses upon coadministration when considering both immunization schedules, despite a tendency toward lower geometric mean titers to some EPI antigens, predefined noninferiority criteria were met for all EPI antigens except for polio 3 when EPI vaccines were given with RTS,S/AS01E at 0, 1, and 2 months. However, when antibody levels at screening were taken into account, the rates of response to polio 3 antigens were comparable between groups. Conclusion. RTS,S/AS01E integrated in the EPI showed a favorable safety and immunogenicity evaluation. Trial registration. ClinicalTrials.gov identifier: NCT00436007. GlaxoSmithKline study ID number: 106369 (Malaria-050

    Severe malaria in children leads to a significant impairment of transitory otoacoustic emissions--a prospective multicenter cohort study.

    Get PDF
    BACKGROUND: Severe malaria may influence inner ear function, although this possibility has not been examined prospectively. In a retrospective analysis, hearing impairment was found in 9 of 23 patients with cerebral malaria. An objective method to quickly evaluate the function of the inner ear are the otoacoustic emissions. Negative transient otoacoustic emissions are associated with a threshold shift of 20 dB and above. METHODS: This prospective multicenter study analyses otoacoustic emissions in patients with severe malaria up to the age of 10 years. In three study sites (Ghana, Gabon, Kenya) 144 patients with severe malaria and 108 control children were included. All malaria patients were treated with parental artesunate. RESULTS: In the control group, 92.6 % (n = 108, 95 % confidence interval 86.19-6.2 %) passed otoacoustic emission screening. In malaria patients, 58.5 % (n = 94, malaria vs controls p < 0.001, 95 % confidence interval 48.4-67.9 %) passed otoacoustic emission screening at the baseline measurement. The value increased to 65.2 % (n = 66, p < 0.001, 95 % confidence interval 53.1-75.5 %) at follow up 14-28 days after diagnosis of malaria. The study population was divided into severe non-cerebral malaria and severe malaria with neurological symptoms (cerebral malaria). Whereas otoacoustic emissions in severe malaria improved to a passing percentage of 72.9 % (n = 48, 95 % confidence interval 59-83.4 %) at follow-up, the patients with cerebral malaria showed a drop in the passing percentage to 33 % (n = 18) 3-7 days after diagnosis. This shows a significant impairment in the cerebral malaria group (p = 0.012 at days 3-7, 95 % confidence interval 16.3-56.3 %; p = 0.031 at day 14-28, 95 % confidence interval 24.5-66.3 %). CONCLUSION: The presented data show that 40 % of children have involvement of the inner ear early in severe malaria. In children, audiological screening after severe malaria infection is not currently recommended, but is worth investigating in larger studies

    Intramuscular Artesunate for Severe Malaria in African Children: A Multicenter Randomized Controlled Trial.

    Get PDF
    BACKGROUND: Current artesunate (ARS) regimens for severe malaria are complex. Once daily intramuscular (i.m.) injection for 3 d would be simpler and more appropriate for remote health facilities than the current WHO-recommended regimen of five intravenous (i.v.) or i.m. injections over 4 d. We compared both a three-dose i.m. and a three-dose i.v. parenteral ARS regimen with the standard five-dose regimen using a non-inferiority design (with non-inferiority margins of 10%). METHODS AND FINDINGS: This randomized controlled trial included children (0.5-10 y) with severe malaria at seven sites in five African countries to assess whether the efficacy of simplified three-dose regimens is non-inferior to a five-dose regimen. We randomly allocated 1,047 children to receive a total dose of 12 mg/kg ARS as either a control regimen of five i.m. injections of 2.4 mg/kg (at 0, 12, 24, 48, and 72 h) (n = 348) or three injections of 4 mg/kg (at 0, 24, and 48 h) either i.m. (n = 348) or i.v. (n = 351), both of which were the intervention arms. The primary endpoint was the proportion of children with ≥ 99% reduction in parasitemia at 24 h from admission values, measured by microscopists who were blinded to the group allocations. Primary analysis was performed on the per-protocol population, which was 96% of the intention-to-treat population. Secondary analyses included an analysis of host and parasite genotypes as risks for prolongation of parasite clearance kinetics, measured every 6 h, and a Kaplan-Meier analysis to compare parasite clearance kinetics between treatment groups. A post hoc analysis was performed for delayed anemia, defined as hemoglobin ≤ 7 g/dl 7 d or more after admission. The per-protocol population was 1,002 children (five-dose i.m.: n = 331; three-dose i.m.: n = 338; three-dose i.v.: n = 333); 139 participants were lost to follow-up. In the three-dose i.m. arm, 265/338 (78%) children had a ≥ 99% reduction in parasitemia at 24 h compared to 263/331 (79%) receiving the five-dose i.m. regimen, showing non-inferiority of the simplified three-dose regimen to the conventional five-dose regimen (95% CI -7, 5; p = 0.02). In the three-dose i.v. arm, 246/333 (74%) children had ≥ 99% reduction in parasitemia at 24 h; hence, non-inferiority of this regimen to the five-dose control regimen was not shown (95% CI -12, 1; p = 0.24). Delayed parasite clearance was associated with the N86YPfmdr1 genotype. In a post hoc analysis, 192/885 (22%) children developed delayed anemia, an adverse event associated with increased leukocyte counts. There was no observed difference in delayed anemia between treatment arms. A potential limitation of the study is its open-label design, although the primary outcome measures were assessed in a blinded manner. CONCLUSIONS: A simplified three-dose i.m. regimen for severe malaria in African children is non-inferior to the more complex WHO-recommended regimen. Parenteral ARS is associated with a risk of delayed anemia in African children. TRIAL REGISTRATION: Pan African Clinical Trials Registry PACTR201102000277177

    Population Structure of Staphylococcus aureus from Remote African Babongo Pygmies

    Get PDF
    Staphylococcus aureus is a bacterium that colonizes humans worldwide. The anterior nares are its main ecological niche. Carriers of S. aureus are at a higher risk of developing invasive infections. Few reports indicated a different clonal structure and profile of virulence factors in S. aureus isolates from Sub-Saharan Africa. As there are no data about isolates from remote indigenous African populations, we conducted a cross-sectional survey of S. aureus nasal carriage in Gabonese Babongo Pygmies. The isolates were characterized regarding their susceptibility to antibiotic agents, possession of virulence factors and clonal lineage. While similar carriage rates were found in populations of industrialized countries, isolates that encode the genes for the Panton-Valentine leukocidin (PVL) were clearly more prevalent than in European countries. Of interest, many methicillin-susceptible S. aureus isolates from Babongo Pygmies showed the same genetic background as pandemic methicillin-resistant S. aureus (MRSA) clones. We advocate a surveillance of S. aureus in neglected African populations to control the development of resistance to antibiotic drugs with particular respect to MRSA and to assess the impact of the high prevalence of PVL-positive isolates
    corecore