730 research outputs found
Towards continuous-wave regime teleportation for light matter quantum relay stations
We report a teleportation experiment involving narrowband entangled photons
at 1560 nm and qubit photons at 795 nm emulated by faint laser pulses. A
nonlinear difference frequency generation stage converts the 795 nm photons to
1560 nm in order to enable interference with one photon out of the pairs, i.e.,
at the same wavelength. The spectral bandwidth of all involved photons is of
about 25 MHz, which is close to the emission bandwidth of emissive quantum
memory devices, notably those based on ensembles of cold atoms and rare earth
ions. This opens the route towards the realization of hybrid quantum nodes,
i.e., combining quantum memories and entanglement-based quantum relays
exploiting either a synchronized (pulsed) or asynchronous (continuous- wave)
scenario
A versatile source of polarisation entangled photons for quantum network applications
We report a versatile and practical approach for generating high-quality
polarization entanglement in a fully guided-wave fashion. Our setup relies on a
high-brilliance type-0 waveguide generator producing paired photon at a telecom
wavelength associated with an advanced energy-time to polarisation transcriber.
The latter is capable of creating any pure polarization entangled state, and
allows manipulating single photon bandwidths that can be chosen at will over
five orders of magnitude, ranging from tens of MHz to several THz. We achieve
excellent entanglement fidelities for particular spectral bandwidths, i.e. 25
MHz, 540 MHz and 100 GHz, proving the relevance of our approach. Our scheme
stands as an ideal candidate for a wide range of network applications, ranging
from dense division multiplexing quantum key distribution to heralded optical
quantum memories and repeaters.Comment: 5 figure
Frame Dependence of the Electric Field Spectrum of Solar Wind Turbulence
We present the first survey of electric field data using the ARTEMIS
spacecraft in the solar wind to study inertial range turbulence. It was found
that the average perpendicular spectral index of the electric field depends on
the frame of measurement. In the spacecraft frame it is -5/3, which matches the
magnetic field due to the large solar wind speed in Lorentz transformation. In
the mean solar wind frame, the electric field is primarily due to the
perpendicular velocity fluctuations and has a spectral index slightly shallower
than -3/2, which is close to the scaling of the velocity. These results are an
independent confirmation of the difference in scaling between the velocity and
magnetic field, which is not currently well understood. The spectral index of
the compressive fluctuations was also measured and found to be close to -5/3,
suggesting that they are not only passive to the velocity but may also interact
nonlinearly with the magnetic field
Polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength
We report the realization of a fiber coupled polarization entangled
photon-pair source at 1310 nm based on a birefringent titanium in-diffused
waveguide integrated on periodically poled lithium niobate. By taking advantage
of a dedicated and high-performance setup, we characterized the quantum
properties of the pairs by measuring two-photon interference in both
Hong-Ou-Mandel and standard Bell inequality configurations. We obtained, for
the two sets of measurements, interference net visibilities reaching nearly
100%, which represent important and competitive results compared to similar
waveguide-based configurations already reported. These results prove the
relevance of our approach as an enabling technology for long-distance quantum
communication.Comment: 13 pages, 4 figures, to appear in New Journal of Physic
Polarization entangled photon-pair source based on quantum nonlinear photonics and interferometry
We present a versatile, high-brightness, guided-wave source of polarization
entangled photons, emitted at a telecom wavelength. Photon-pairs are generated
using an integrated type-0 nonlinear waveguide, and subsequently prepared in a
polarization entangled state via a stabilized fiber interferometer. We show
that the single photon emission wavelength can be tuned over more than 50 nm,
whereas the single photon spectral bandwidth can be chosen at will over more
than five orders of magnitude (from 25 MHz to 4 THz). Moreover, by performing
entanglement analysis, we demonstrate a high degree of control of the quantum
state via the violation of the Bell inequalities by more than 40 standard
deviations. This makes this scheme suitable for a wide range of quantum optics
experiments, ranging from fundamental research to quantum information
applications. We report on details of the setup, as well as on the
characterization of all included components, previously outlined in F. Kaiser
et al. (2013 Laser Phys. Lett. 10, 045202).Comment: 16 pages, 7 figure
Heating of the solar wind with electron and proton effects
We examine the effects of including effects of both protons and electrons on the heating of the fast solar wind through two different approaches. In the first approach, we incorporate the electron temperature in an MHD turbulence transport model for the solar wind. In the second approach, we adopt more empirically based methods by analyzing the measured proton and electron temperatures to calculate the heat deposition rates. Overall, we conclude that incorporating separate proton and electron temperatures and heat conduction effects provides an improved and more complete model of the heating of the solar wind
Towards an ultra efficient kinetic scheme. Part I: basics on the BGK equation
In this paper we present a new ultra efficient numerical method for solving
kinetic equations. In this preliminary work, we present the scheme in the case
of the BGK relaxation operator. The scheme, being based on a splitting
technique between transport and collision, can be easily extended to other
collisional operators as the Boltzmann collision integral or to other kinetic
equations such as the Vlasov equation. The key idea, on which the method
relies, is to solve the collision part on a grid and then to solve exactly the
transport linear part by following the characteristics backward in time. The
main difference between the method proposed and semi-Lagrangian methods is that
here we do not need to reconstruct the distribution function at each time step.
This allows to tremendously reduce the computational cost of the method and it
permits for the first time, to the author's knowledge, to compute solutions of
full six dimensional kinetic equations on a single processor laptop machine.
Numerical examples, up to the full three dimensional case, are presented which
validate the method and assess its efficiency in 1D, 2D and 3D
High-quality polarization entanglement state preparation and manipulation in standard telecommunication channels
We report a novel and simple approach for generating near-perfect quality
polarization entanglement in a fully guided-wave fashion. Both deterministic
pair separation into two adjacent telecommunication channels and the paired
photons' temporal walk-off compensation are achieved using standard fiber
components. Two-photon interference experiments are performed, both for
quantitatively demonstrating the relevance of our approach, and for
manipulating the produced state between bosonic and fermionic symmetries. The
compactness, versatility, and reliability of this configuration makes it a
potential candidate for quantum communication applications.Comment: 6 figure
Analysis of Elliptically Polarized Maximally Entangled States for Bell Inequality Tests
When elliptically polarized maximally entangled states are considered, i.e.,
states having a non random phase factor between the two bipartite polarization
components, the standard settings used for optimal violation of Bell
inequalities are no longer adapted. One way to retrieve the maximal amount of
violation is to compensate for this phase while keeping the standard Bell
inequality analysis settings. We propose in this paper a general theoretical
approach that allows determining and adjusting the phase of elliptically
polarized maximally entangled states in order to optimize the violation of Bell
inequalities. The formalism is also applied to several suggested experimental
phase compensation schemes. In order to emphasize the simplicity and relevance
of our approach, we also describe an experimental implementation using a
standard Soleil-Babinet phase compensator. This device is employed to correct
the phase that appears in the maximally entangled state generated from a
type-II nonlinear photon-pair source after the photons are created and
distributed over fiber channels.Comment: 8 page
TEMPO2, a new pulsar timing package. I: Overview
Contemporary pulsar timing experiments have reached a sensitivity level where
systematic errors introduced by existing analysis procedures are limiting the
achievable science. We have developed tempo2, a new pulsar timing package that
contains propagation and other relevant effects implemented at the 1ns level of
precision (a factor of ~100 more precise than previously obtainable). In
contrast with earlier timing packages, tempo2 is compliant with the general
relativistic framework of the IAU 1991 and 2000 resolutions and hence uses the
International Celestial Reference System, Barycentric Coordinate Time and
up-to-date precession, nutation and polar motion models. Tempo2 provides a
generic and extensible set of tools to aid in the analysis and visualisation of
pulsar timing data. We provide an overview of the timing model, its accuracy
and differences relative to earlier work. We also present a new scheme for
predictive use of the timing model that removes existing processing artifacts
by properly modelling the frequency dependence of pulse phase.Comment: Accepted by MNRA
- …
