31 research outputs found

    Viral and bacterial etiology of severe acute respiratory illness among children < 5 years of age without influenza in Niger.

    Get PDF
    International audienceGlobally, pneumonia is the leading cause of morbidity and mortality in children, with the highest burden experienced in sub-Saharan Africa and Asia. However, there is a dearth of information on the etiology of severe acute respiratory illness (SARI) in Africa, including Niger. We implemented a retrospective study as part of national influenza sentinel surveillance in Niger. We randomly selected a sample of nasopharyngeal specimens collected from children <5 years of age hospitalized with SARI from January 2010 through December 2012 in Niger. The samples were selected from individuals that tested negative by real-time reverse transcription polymerase chain reaction (rRT-PCR) for influenza A and B virus. The samples were analyzed using the Fast Track Diagnostic Respiratory Pathogens 21plus Kit (BioMérieux, Luxemburg), which detects 23 respiratory pathogens including 18 viral and 5 bacterial agents. Among the 160 samples tested, 138 (86%) tested positive for at least one viral or bacterial pathogen; in 22 (16%) sample, only one pathogen was detected. We detected at least one respiratory virus in 126 (78%) samples and at least one bacterium in 102 (64%) samples. Respiratory syncytial virus (56/160; 35%), rhinovirus (47/160; 29%) and parainfluenza virus (39/160; 24%) were the most common viral pathogens detected. Among bacterial pathogens, Streptococcus pneumoniae (90/160; 56%) and Haemophilus influenzae type b (20/160; 12%) predominated. The high prevalence of certain viral and bacterial pathogens among children <5 years of age with SARI highlights the need for continued and expanded surveillance in Niger

    Epidemiological changes in meningococcal meningitis in Niger from 2008 to 2011 and the impact of vaccination.

    Get PDF
    BACKGROUND: The epidemiology of bacterial meningitis in the African 'meningitis belt' changes periodically. In order to design an effective vaccination strategy, we have examined the epidemiological and microbiological patterns of bacterial meningitis, and especially that of meningococcal meningitis, in Niger during the period 2008-2011. During this period a mass vaccination campaign with the newly developed meningococcal A conjugate vaccine (MenAfriVac®) was undertaken. METHOD: Cerebrospinal fluid samples were collected from health facilities throughout Niger and analysed by culture, seroagglutination and/or speciation polymerase chain reaction, followed by genogrouping PCR for Neisseria meningitidis infections. A sample of strains were analysed by multi-locus sequence typing. RESULTS: N. meningitidis serogroup A cases were prevalent in 2008 and 2009 [98.6% and 97.5% of all N. meningitidis cases respectively]. The prevalence of serogroup A declined in 2010 [26.4%], with the emergence of serogroup W Sequence Type (ST) 11 [72.2% of cases], and the serogroup A meningococcus finally disappeared in 2011. The geographical distribution of cases N. meningitidis serogroups A and W within Niger is described. CONCLUSION: The substantial decline of serogroup A cases that has been observed from 2010 onwards in Niger seems to be due to several factors including a major polysaccharide A/C vaccination campaign in 2009, the introduction of MenAfriVac® in 10 districts at risk in December 2010, the natural dynamics of meningococcal infection and the persistence of serogroup A sequence-type 7 for about 10 years. The emergence of serogroup W strains suggests that there may be a need for serogroup W containing vaccines in Niger in the coming years

    Pharyngeal carriage of Neisseria species in the African meningitis belt.

    Get PDF
    OBJECTIVES: Neisseria meningitidis, together with the non-pathogenic Neisseria species (NPNs), are members of the complex microbiota of the human pharynx. This paper investigates the influence of NPNs on the epidemiology of meningococcal infection. METHODS: Neisseria isolates were collected during 18 surveys conducted in six countries in the African meningitis belt between 2010 and 2012 and characterized at the rplF locus to determine species and at the variable region of the fetA antigen gene. Prevalence and risk factors for carriage were analyzed. RESULTS: A total of 4694 isolates of Neisseria were obtained from 46,034 pharyngeal swabs, a carriage prevalence of 10.2% (95% CI, 9.8-10.5). Five Neisseria species were identified, the most prevalent NPN being Neisseria lactamica. Six hundred and thirty-six combinations of rplF/fetA_VR alleles were identified, each defined as a Neisseria strain type. There was an inverse relationship between carriage of N. meningitidis and of NPNs by age group, gender and season, whereas carriage of both N. meningitidis and NPNs was negatively associated with a recent history of meningococcal vaccination. CONCLUSION: Variations in the prevalence of NPNs by time, place and genetic type may contribute to the particular epidemiology of meningococcal disease in the African meningitis belt

    Pharyngeal carriage of Neisseria species in the African meningitis belt.

    Get PDF
    OBJECTIVES: Neisseria meningitidis, together with the non-pathogenic Neisseria species (NPNs), are members of the complex microbiota of the human pharynx. This paper investigates the influence of NPNs on the epidemiology of meningococcal infection. METHODS: Neisseria isolates were collected during 18 surveys conducted in six countries in the African meningitis belt between 2010 and 2012 and characterized at the rplF locus to determine species and at the variable region of the fetA antigen gene. Prevalence and risk factors for carriage were analyzed. RESULTS: A total of 4694 isolates of Neisseria were obtained from 46,034 pharyngeal swabs, a carriage prevalence of 10.2% (95% CI, 9.8-10.5). Five Neisseria species were identified, the most prevalent NPN being Neisseria lactamica. Six hundred and thirty-six combinations of rplF/fetA_VR alleles were identified, each defined as a Neisseria strain type. There was an inverse relationship between carriage of N. meningitidis and of NPNs by age group, gender and season, whereas carriage of both N. meningitidis and NPNs was negatively associated with a recent history of meningococcal vaccination. CONCLUSION: Variations in the prevalence of NPNs by time, place and genetic type may contribute to the particular epidemiology of meningococcal disease in the African meningitis belt.MenAfriCar was funded by the Wellcome Trust (086546/Z/08/Z) and the Bill and Melinda Gates Foundation (51251). Kanny Diallo holds a Wellcome Trust Training Fellowship in Public Health and Tropical Medicine.This is the final version of the article. It first appeared from Elsevier via https://doi.org/10.1016/j.jinf.2016.03.01

    Diagnostic accuracy of VIKIA® Rota-Adeno and Premier™ Rotaclone® tests for the detection of rotavirus in Niger

    No full text
    Abstract Objective We conducted a parallel evaluation of the diagnostic accuracy of VIKIA® Rota-Adeno, a rapid diagnostic test (RDT) and Premier™ Rotaclone® an enzyme immunoassay (EIA) using reverse transcription polymerase chain reaction (RT-PCR) as the reference standard. The study was part of a rotavirus surveillance project in Niger. Results The sensitivity of both tests was 80.7%. After exclusion of one indeterminate result by visual reading, the specificity of the Premier™ Rotaclone® was 100% by visual or optical density readings and that of VIKIA® Rota-Adeno test was 95.5%. Inter-reader agreement was excellent for both tests (kappa = 1). Our results showed almost similar performance of the EIA and RDT when compared to RT-PCR. Hence, the VIKIA® Rota-Adeno could be a good alternative for use in peripheral health centres where laboratory capacity is limited

    Development of Real-Time PCR Methods for the Detection of Bacterial Meningitis Pathogens without DNA Extraction.

    No full text
    Neisseria meningitidis (Nm), Haemophilus influenzae (Hi), and Streptococcus pneumoniae (Sp) are the lead causes of bacterial meningitis. Detection of these pathogens from clinical specimens using traditional real-time PCR (rt-PCR) requires DNA extraction to remove the PCR inhibitors prior to testing, which is time consuming and labor intensive. In this study, five species-specific (Nm-sodC and -ctrA, Hi-hpd#1 and -hpd#3 and Sp-lytA) and six serogroup-specific rt-PCR tests (A, B, C, W, X, Y) targeting Nm capsular genes were evaluated in the two direct rt-PCR methods using PerfeCTa and 5x Omni that do not require DNA extraction. The sensitivity and specify of the two direct rt-PCR methods were compared to TaqMan traditional rt-PCR, the current standard rt-PCR method for the detection of meningitis pathogens. The LLD for all 11 rt-PCR tests ranged from 6,227 to 272,229 CFU/ml for TaqMan, 1,824-135,982 for 5x Omni, and 168-6,836 CFU/ml for PerfeCTa. The diagnostic sensitivity using TaqMan ranged from 89.2%-99.6%, except for NmB-csb, which was 69.7%. For 5x Omni, the sensitivity varied from 67.1% to 99.8%, with three tests below 90%. The sensitivity of these tests using PerfeCTa varied from 89.4% to 99.8%. The specificity ranges of the 11 tests were 98.0-99.9%, 97.5-99.9%, and 92.9-99.9% for TaqMan, 5x Omni, and PerfeCTa, respectively. PerfeCTa direct rt-PCR demonstrated similar or better sensitivity compared to 5x Omni direct rt-PCR or TaqMan traditional rt-PCR. Since the direct rt-PCR method does not require DNA extraction, it reduces the time and cost for processing CSF specimens, increases testing throughput, decreases the risk of cross-contamination, and conserves precious CSF. The direct rt-PCR method will be beneficial to laboratories with high testing volume

    Influenza Sentinel Surveillance among Patients with Influenza-Like-Illness and Severe Acute Respiratory Illness within the Framework of the National Reference Laboratory, Niger, 2009-2013.

    No full text
    Little is known about the epidemiology of influenza in Africa, including Niger. We documented the epidemiology of seasonal and pandemic influenza among outpatients with influenza-like-illness (ILI) and inpatients with severe acute respiratory illness (SARI) presenting at selected sentinel sites in Niger from April 2009 through April 2013.Patients meeting the ILI or the SARI case definitions and presenting at the outpatient or inpatient departments of selected sentinel sites were enrolled. Epidemiological data and nasopharyngeal swabs were collected. The respiratory samples were tested by real-time reverse transcription polymerase chain reaction.From April 2009 to April 2013, laboratory results were obtained from 1176 ILI and 952 SARI cases, of which 146 (12%) and 54 (6%) tested positive for influenza virus, respectively. The influenza positivity rate was highest in the 5-14 year age-group (32/130; 24% among ILI patients and 6/61; 10% among SARI patients) followed by the 1-4 year age-group (69/438; 16% among ILI patients and 32/333; 9% among SARI patients). Of the 200 influenza positive cases 104 (52%) were A(H1N1)pdm09, 62 (31%) were A(H3N2) and 34 (17%) were B. Influenza viruses were detected predominantly from November to April with peak viral activity observed in February.The Niger sentinel surveillance system allowed to monitor the circulation of seasonal influenza as well as the introduction and spread of influenza A(H1N1)pdm09 in the country. Continuous influenza surveillance is needed to better understand the epidemiology of seasonal influenza and monitor the emergence of influenza strains with pandemic potential

    Evaluation of response strategies against epidemics due to Neisseria meningitidis C in Niger

    No full text
    International audienceOBJECTIVE: To inform public health recommendations, we evaluated the effectiveness and efficiency of current and hypothetical surveillance and vaccine response strategies against Neisseria meningitidis C meningitis epidemics in 2015 in Niger.METHODS : We analysed reports of suspected and confirmed cases of meningitis from the region of Dosso during 2014 and 2015. Based on a definition of epidemic signals, the effectiveness and efficiency of surveillance and vaccine response strategies were evaluated by calculating the number of potentially vaccine-preventable cases and number of vaccine doses needed per epidemic signal.RESULTS : A total of 4763 weekly health area reports, collected in 90 health areas with 1282 suspected meningitis cases, were included. At a threshold of 10 per 100 000, the total number of estimated vaccine-preventable cases was 29 with district-level surveillance and vaccine response, 141 with health area-level surveillance and vaccination and 339 with health area-level surveillance and district-level vaccination. While being most effective, the latter strategy required the largest number of vaccine doses (1.8 million), similar to the strategy of surveillance and vaccination at district level (1.3 million), whereas the strategy of surveillance and vaccination at health area level would have required only 0.8 million doses. Thus, efficiency was lowest for district-level surveillance and highest for health area-level surveillance with district-level vaccination.CONCLUSION : In this analysis, we found that effectiveness and efficiency were higher at health area-level surveillance and district-level vaccination than for other strategies. Use of N. meningitidis C vaccines in a preventive strategy thus should be considered, in particular as most reactive vaccine response strategies in our analysis had little impact on disease burden

    Household transmission of Neisseria meningitidis in the African meningitis belt: a longitudinal cohort study

    No full text
    International audienceBackgroundInformation on transmission of meningococcal infection in the African meningitis belt is scarce. We aimed to describe transmission patterns of Neisseria meningitidis (meningococcus) in households in the African meningitis belt.MethodsCross-sectional carriage surveys were done in seven African meningitis belt countries (Chad, Ethiopia, Ghana, Mali, Niger, Nigeria, and Senegal) between Aug 1, 2010, and Oct 15, 2012. Meningococcal carriers identified in these surveys and all available people in their households were recruited into this longitudinal cohort study. We took pharyngeal swabs at first visit and took further swabs twice a month for 2 months and then monthly for a further 4 months. We used conventional bacteriological and molecular techniques to identify and characterise meningococci. We estimated the rates of carriage acquisition and recovery using a multi-state Markov model.FindingsMeningococci were isolated from 241 (25%) of 980 members of 133 households in which a carrier had been identified in the cross-sectional survey or at the first household visit. Carriage was detected subsequently in another household member who was not an index carrier in 75 households. Transmission within a household, suggested by detection of a further carrier with the same strain as the index carrier, was found in 52 of these 75 households. Children younger than 5 years were the group that most frequently acquired carriage from other household members. The overall individual acquisition rate was 2·4% (95% CI 1·6–4·0) per month, varying by age and household carriage status. The mean duration of carriage was 3·4 months (95% CI 2·7–4·4).InterpretationIn the African meningitis belt, transmission of meningococci within households is important, particularly for young children, and periods of carriage are usually of short duration
    corecore