88 research outputs found

    Applications of fluorescence and bioluminescence resonance energy transfer to drug discovery at G protein coupled receptors

    Get PDF
    The role of G protein coupled receptors (GPCRs) in numerous physiological processes that may be disrupted or modified in disease makes them key targets for the development of new therapeutic medicines. A wide variety of resonance energy transfer (RET) techniques such as fluorescence RET and bioluminescence RET have been developed in recent years to detect protein–protein interactions in living cells. Furthermore, these techniques are now being exploited to screen for novel compounds that activate or block GPCRs and to search for new, previously undiscovered signaling pathways activated by well-known pharmacologically classified drugs. The high resolution that can be achieved with these RET methods means that they are well suited to study both intramolecular conformational changes in response to ligand binding at the receptor level and intermolecular interactions involving protein translocation in subcellular compartments resulting from external stimuli. In this review we highlight the latest advances in these technologies to illustrate general principles

    Étude de l'oligomérisation du récepteur CCR5 par la technique de BRET

    No full text
    PARIS7-Bibliothèque centrale (751132105) / SudocSudocFranceF

    Application of an In Vivo Hepatic Triacylglycerol Production Method in the Setting of a High-Fat Diet in Mice

    No full text
    High-fat (HF) diets typically promote diet-induced obesity (DIO) and metabolic dysfunction (i.e., insulin resistance, hypertriglyceridemia, and hepatic steatosis). Dysfunction of triacylglycerol (TAG) metabolism may contribute to the development of hepatic steatosis, via increased de novo lipogenesis or repackaging of circulating nonesterified fatty acids (NEFAs). Hepatic TAG production (HTP) rate can be assessed through injecting mice with nonionic detergents that inhibit tissue lipoprotein lipase. Potential confounding effects of detergent-based HTP tests (HTPTs) used in longitudinal studies—including the impact on food intake, energy balance, and weight gain—have not been reported. To examine this, male C57BL/6J mice were fed a 10% or 60% kcal diet. After 4 weeks, the mice underwent an HTPT via poloxamer 407 intraperitoneal injections (1000 mg/kg). Weight gain, energy intake, and postabsorptive TAG levels normalized 7–10 days post-HTPT. The post-HTPT recovery of body weight and energy intake suggest that, in metabolic phenotyping studies, any additional sample collection should occur at least 7–10 days after the HTPT to reduce confounding effects. Diet-specific effects on HTP were also observed: HF-fed mice had reduced HTP, plasma TAG, and NEFA levels compared to controls. In conclusion, the current study highlights the procedural and physiological complexities associated with studying lipid metabolism using a HTPT in the DIO mouse model

    Constitutive agonist-independent CCR5 oligomerization and antibody-mediated clustering occurring at physiological levels of receptors.

    No full text
    Although homo-oligomerization has been reported for several G protein-coupled receptors, this phenomenon was not studied at low concentrations of receptors. Furthermore, it is not clear whether homo-oligomerization corresponds to an intrinsic property of nascent receptors or if it is a consequence of receptor activation. Here CCR5 receptor oligomerization was studied by bioluminescence resonance energy transfer (BRET) in cells expressing physiological levels of receptors. A strong energy transfer could be observed, in the absence of ligands, in whole cells and in both endoplasmic reticulum and plasma membrane subfractions, supporting the hypothesis of a constitutive oligomerization that occurs early after biosynthesis. No change in BRET was observed upon agonist binding, indicating that the extent of oligomerization is unrelated to the activation state of the receptor. In contrast, a robust increase of BRET, induced by a monoclonal antibody known to promote receptor clustering, suggests that microaggregation of preformed receptor homo-oligomers can occur. Taken together, our data indicate that constitutive receptor homo-oligomerization has a biologically relevant significance and might be involved in the process of receptor biosynthesis.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    Detailed Mechanistic Analysis of Gevokizumab, an Allosteric Anti–IL-1 β

    No full text

    Homo- and Hetero-oligomerization of β-Arrestins in Living Cells

    No full text
    International audienceArrestins are important proteins, which regulate the function of serpentine heptahelical receptors and contribute to multiple signaling pathways downstream of receptors. The ubiquitous β-arrestins are believed to function exclusively as monomers, although self-association is assumed to control the activity of visual arrestin in the retina, where this isoform is particularly abundant. Here the oligomerization status of β-arrestins was investigated using different approaches, including co-immunoprecipitation of epitope-tagged β-arrestins and resonance energy transfer (BRET and FRET) in living cells. At steady state and at physiological concentrations, β-arrestins constitutively form both homo- and hetero-oligomers. Co-expression of β-arrestin2 and β-arrestin1 prevented β-arrestin1 accumulation into the nucleus, suggesting that hetero-oligomerization may have functional consequences. Our data clearly indicate that β-arrestins can exist as homo- and hetero-oligomers in living cells and raise the hypothesis that the oligomeric state may regulate their subcellular distribution and functions

    Lectin-induced haemocyte inactivation in insects

    No full text
    Most multimeric lectins are adhesion molecules, promoting attachment and spreading on surface glycodeterminants. In addition, some lectins have counter-adhesion properties, detaching already spread cells which then acquire round or spindle-formed cell shapes. Since lectin-mediated adhesion and detachment is observed in haemocyte-like Drosophila cells, which have haemomucin as the major lectin-binding glycoprotein, the two opposite cell behaviours may be the result of lectin-mediated receptor rearrangements on the cell surface. To investigate oligomeric lectins as a possible extracellular driving force affecting cell shape changes, we examined lectin-mediated reactions in lepidopteran haemocytes after cytochalasin D-treatment and observed that while cell-spreading was dependent on F-actin, lectin-uptake was less dependent on F-actin. We propose a model of cell shape changes involving a dynamic balance between adhesion and uptake reactions.Richard Glatz, Harry L.S. Roberts, Dongmei Li, Muhammad Sarjan, Ulrich H. Theopold, Sassan Asgari and Otto Schmidthttp://www.elsevier.com/wps/find/journaldescription.cws_home/231/description#descriptio
    • …
    corecore