38 research outputs found

    Novel thiophene symmetrical Schiff base compounds as corrosion inhibitor for mild steel in acidic media

    Get PDF
    The inhibiting effect of two Schiff bases on the corrosion of the mild steel (MS) in 1 M HCl has been studied by electrochemical impedance spectroscopy (EIS) and Tafel polarisation measurements. The Schiff bases, 4,4′-bis(3-carboxaldehyde thiophene) diphenyl diimino ether (L1) and 4,4′-bis(3-carboxaldehyde thiophene) diphenyl diimino ethane (L2), were synthesized using 3-carboxaldehydethiophene and its corresponding amine. Polarisation curves reveal that both compounds are mixed type (cathodic/anodic) inhibitors and inhibition efficiency (% IE) increases with increasing concentration of compounds. It is suggested that their effects depend on their concentrations and the molecular structures. Adsorption of compounds on mild steel surface is spontaneous and obeys Langmuir’s isotherm

    Al2O3-Supported W-V-O bronzes catalysts for oxidative dehydrogenation of ethane

    Full text link
    [EN] Supported vanadium-containing hexagonal tungsten bronzes (HTBs) were prepared for the first time using a combination of a new soft synthetic procedure and fine-tuned heat treatments. The characterization of heat-treated samples indicates that both unsupported and Al2O3-supported materials present mainly vanadium-containing crystals with HTB structure smaller in the supported materials. Raman, diffuse reflectance UV-visible and EPR spectroscopic results suggest the presence of different V species depending on the V loading and catalyst composition. When used as catalysts for ethane oxidative dehydrogenation (ODH), selected supported vanadium-HTBs show selectivity to ethylene as high as 80% at ethane conversion of around 18%. These values position these new materials among the most active and selective catalysts so far reported in the literature for ethane ODH over supported vanadium oxide catalysts.The authors acknowledge the DGICYT in Spain (projects RTI2018-099668-B-C21 and SEV-2016-0683) for financial support. The research group of Prof. Fabrizio Cavani (University of Bologna, Italy) and Consorzio INSTM (Firenze) are gratefully acknowledged for a PhD grant to A. C. The authors also thank the Electron Microscopy Service of Universitat Politecnica de Valencia for its support.Benomar, S.; Chieregato, A.; Masso, A.; Soriano Rodríguez, MD.; Vidal Moya, JA.; Blasco Lanzuela, T.; Issaadi, R.... (2020). Al2O3-Supported W-V-O bronzes catalysts for oxidative dehydrogenation of ethane. Catalysis Science & Technology. 10(23):8064-8076. https://doi.org/10.1039/d0cy01220cS806480761023GUO, J.-D., & WHITTINGHAM, M. S. (1993). TUNGSTEN OXIDES AND BRONZES: SYNTHESIS, DIFFUSION AND REACTIVITY. International Journal of Modern Physics B, 07(23n24), 4145-4164. doi:10.1142/s0217979293003607Whittingham, M. S., Guo, J.-D., Chen, R., Chirayil, T., Janauer, G., & Zavalij, P. (1995). The hydrothermal synthesis of new oxide materials. Solid State Ionics, 75, 257-268. doi:10.1016/0167-2738(94)00220-mChen, J., Wang, H., Deng, J., Xu, C., & Wang, Y. (2018). Low-crystalline tungsten trioxide anode with superior electrochemical performance for flexible solid-state asymmetry supercapacitor. Journal of Materials Chemistry A, 6(19), 8986-8991. doi:10.1039/c8ta01323cBartha, L., Kiss, A. B., & Szalay, T. (1995). Chemistry of tungsten oxide bronzes. International Journal of Refractory Metals and Hard Materials, 13(1-3), 77-91. doi:10.1016/0263-4368(94)00031-xTilley, R. J. D. (1995). The crystal chemistry of the higher tungsten oxides. International Journal of Refractory Metals and Hard Materials, 13(1-3), 93-109. doi:10.1016/0263-4368(95)00004-6Michailovski, A., Krumeich, F., & Patzke, G. R. (2004). Hierarchical Growth of Mixed Ammonium Molybdenum/Tungsten Bronze Nanorods. Chemistry of Materials, 16(8), 1433-1440. doi:10.1021/cm0311731Quan, H., Gao, Y., & Wang, W. (2020). Tungsten oxide-based visible light-driven photocatalysts: crystal and electronic structures and strategies for photocatalytic efficiency enhancement. Inorganic Chemistry Frontiers, 7(4), 817-838. doi:10.1039/c9qi01516gMichailovski, A., & Patzke, G. R. (2006). Hydrothermal Synthesis of Molybdenum Oxide Based Materials: Strategy and Structural Chemistry. Chemistry - A European Journal, 12(36), 9122-9134. doi:10.1002/chem.200600977Michailovski, A., Kiebach, R., Bensch, W., Grunwaldt, J.-D., Baiker, A., Komarneni, S., & Patzke, G. R. (2006). Morphological and Kinetic Studies on Hexagonal Tungstates. Chemistry of Materials, 19(2), 185-197. doi:10.1021/cm061020oKiebach, R., Pienack, N., Bensch, W., Grunwaldt, J.-D., Michailovski, A., Baiker, A., … Patzke, G. R. (2008). Hydrothermal Formation of W/Mo-Oxides: A Multidisciplinary Study of Growth and Shape. Chemistry of Materials, 20(9), 3022-3033. doi:10.1021/cm7028036Magnéli, A., Blomberg, B., Reio, L., Saluste, E., Stjernholm, R., & Ehrensvärd, G. (1951). Contribution to the Knowledge of the Alkali Tungsten Bronzes. Acta Chemica Scandinavica, 5, 372-378. doi:10.3891/acta.chem.scand.05-0372C. N. R. Rao and K.Biswas , Soft Chemistry Routes, in Essentials of Inorganic Materials Synthesis , ed. C. N. R. Rao and K. Biswas , John Wiley & Sons, Inc. , New Jersey , 2015 , ch. 10Li, F., Qian, Y., & Stein, A. (2010). Template-Directed Synthesis and Organization of Shaped Oxide/Phosphate Nanoparticles. Chemistry of Materials, 22(10), 3226-3235. doi:10.1021/cm100478zGopalakrishnan, J. (1995). Chimie Douce Approaches to the Synthesis of Metastable Oxide Materials. Chemistry of Materials, 7(7), 1265-1275. doi:10.1021/cm00055a001Stevenson, S., & Sermon, P. A. (1987). Promotion of nitrogen and hydrogen chemisorption and ammonia synthesis on alumina-supported hexagonal tungsten bronze, Kx WO3. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 83(7), 2175. doi:10.1039/f19878302175Szilágyi, I. M., Hange, F., Madarász, J., & Pokol, G. (2006). In situ HT-XRD Study on the Formation of Hexagonal Ammonium Tungsten Bronze by Partial Reduction of Ammonium Paratungstate Tetrahydrate. European Journal of Inorganic Chemistry, 2006(17), 3413-3418. doi:10.1002/ejic.200500875Soriano, M. D., Concepción, P., Nieto, J. M. L., Cavani, F., Guidetti, S., & Trevisanut, C. (2011). Tungsten-Vanadium mixed oxides for the oxidehydration of glycerol into acrylic acid. Green Chemistry, 13(10), 2954. doi:10.1039/c1gc15622eGarcía-González, E., Soriano, M. D., Urones-Garrote, E., & López Nieto, J. M. (2014). On the origin of the spontaneous formation of nanocavities in hexagonal bronzes (W,V)O3. Dalton Trans., 43(39), 14644-14652. doi:10.1039/c4dt01465kChieregato, A., López Nieto, J. M., & Cavani, F. (2015). Mixed-oxide catalysts with vanadium as the key element for gas-phase reactions. Coordination Chemistry Reviews, 301-302, 3-23. doi:10.1016/j.ccr.2014.12.003Cavani, F., Ballarini, N., & Cericola, A. (2007). Oxidative dehydrogenation of ethane and propane: How far from commercial implementation? Catalysis Today, 127(1-4), 113-131. doi:10.1016/j.cattod.2007.05.009Gärtner, C. A., van Veen, A. C., & Lercher, J. A. (2013). Oxidative Dehydrogenation of Ethane: Common Principles and Mechanistic Aspects. ChemCatChem, 5(11), 3196-3217. doi:10.1002/cctc.201200966Kube, P., Frank, B., Wrabetz, S., Kröhnert, J., Hävecker, M., Velasco-Vélez, J., … Trunschke, A. (2017). Functional Analysis of Catalysts for Lower Alkane Oxidation. ChemCatChem, 9(4), 573-585. doi:10.1002/cctc.201601194Rozanska, X., Fortrie, R., & Sauer, J. (2014). Size-Dependent Catalytic Activity of Supported Vanadium Oxide Species: Oxidative Dehydrogenation of Propane. Journal of the American Chemical Society, 136(21), 7751-7761. doi:10.1021/ja503130zDinse, A., Schomäcker, R., & Bell, A. T. (2009). The role of lattice oxygen in the oxidative dehydrogenation of ethane on alumina-supported vanadium oxide. Physical Chemistry Chemical Physics, 11(29), 6119. doi:10.1039/b821131kBlasco, T., Galli, A., López Nieto, J. M., & Trifiró, F. (1997). Oxidative Dehydrogenation of Ethane andn-Butane on VOx/Al2O3Catalysts. Journal of Catalysis, 169(1), 203-211. doi:10.1006/jcat.1997.1673Argyle, M. D., Chen, K., Bell, A. T., & Iglesia, E. (2002). Effect of Catalyst Structure on Oxidative Dehydrogenation of Ethane and Propane on Alumina-Supported Vanadia. Journal of Catalysis, 208(1), 139-149. doi:10.1006/jcat.2002.3570Al-Ghamdi, S., Volpe, M., Hossain, M. M., & de Lasa, H. (2013). VOx/c-Al2O3 catalyst for oxidative dehydrogenation of ethane to ethylene: Desorption kinetics and catalytic activity. Applied Catalysis A: General, 450, 120-130. doi:10.1016/j.apcata.2012.10.007SOLSONA, B., VAZQUEZ, M., IVARS, F., DEJOZ, A., CONCEPCION, P., & LOPEZNIETO, J. (2007). Selective oxidation of propane and ethane on diluted Mo–V–Nb–Te mixed-oxide catalysts. Journal of Catalysis, 252(2), 271-280. doi:10.1016/j.jcat.2007.09.019Botella, P., Dejoz, A., Abello, M. C., Vázquez, M. I., Arrúa, L., & López Nieto, J. M. (2009). Selective oxidation of ethane: Developing an orthorhombic phase in Mo–V–X (X=Nb, Sb, Te) mixed oxides. Catalysis Today, 142(3-4), 272-277. doi:10.1016/j.cattod.2008.09.016Gaffney, A. M., & Mason, O. M. (2017). Ethylene production via Oxidative Dehydrogenation of Ethane using M1 catalyst. Catalysis Today, 285, 159-165. doi:10.1016/j.cattod.2017.01.020HERACLEOUS, E., & LEMONIDOU, A. (2006). Ni–Nb–O mixed oxides as highly active and selective catalysts for ethene production via ethane oxidative dehydrogenation. Part I: Characterization and catalytic performance. Journal of Catalysis, 237(1), 162-174. doi:10.1016/j.jcat.2005.11.002Ipsakis, D., Heracleous, E., Silvester, L., Bukur, D. B., & Lemonidou, A. A. (2017). Reduction and oxidation kinetic modeling of NiO-based oxygen transfer materials. Chemical Engineering Journal, 308, 840-852. doi:10.1016/j.cej.2016.09.114Solsona, B., Concepción, P., López Nieto, J. M., Dejoz, A., Cecilia, J. A., Agouram, S., … Rodríguez Castellón, E. (2016). Nickel oxide supported on porous clay heterostructures as selective catalysts for the oxidative dehydrogenation of ethane. Catalysis Science & Technology, 6(10), 3419-3429. doi:10.1039/c5cy01811kZhu, H., Rosenfeld, D. C., Harb, M., Anjum, D. H., Hedhili, M. N., Ould-Chikh, S., & Basset, J.-M. (2016). Ni–M–O (M = Sn, Ti, W) Catalysts Prepared by a Dry Mixing Method for Oxidative Dehydrogenation of Ethane. ACS Catalysis, 6(5), 2852-2866. doi:10.1021/acscatal.6b00044Carrero, C. A., Burt, S. P., Huang, F., Venegas, J. M., Love, A. M., Mueller, P., … Hermans, I. (2017). Supported two- and three-dimensional vanadium oxide species on the surface of β-SiC. Catalysis Science & Technology, 7(17), 3707-3714. doi:10.1039/c7cy01036bLove, A. M., Carrero, C. A., Chieregato, A., Grant, J. T., Conrad, S., Verel, R., & Hermans, I. (2016). Elucidation of Anchoring and Restructuring Steps during Synthesis of Silica-Supported Vanadium Oxide Catalysts. Chemistry of Materials, 28(15), 5495-5504. doi:10.1021/acs.chemmater.6b02118Grant, J. T., Carrero, C. A., Love, A. M., Verel, R., & Hermans, I. (2015). Enhanced Two-Dimensional Dispersion of Group V Metal Oxides on Silica. ACS Catalysis, 5(10), 5787-5793. doi:10.1021/acscatal.5b01679Barman, S., Maity, N., Bhatte, K., Ould-Chikh, S., Dachwald, O., Haeßner, C., … Basset, J.-M. (2016). Single-Site VOx Moieties Generated on Silica by Surface Organometallic Chemistry: A Way To Enhance the Catalytic Activity in the Oxidative Dehydrogenation of Propane. ACS Catalysis, 6(9), 5908-5921. doi:10.1021/acscatal.6b01263Maffia, G. J., Gaffney, A. M., & Mason, O. M. (2016). Techno-Economic Analysis of Oxidative Dehydrogenation Options. Topics in Catalysis, 59(17-18), 1573-1579. doi:10.1007/s11244-016-0677-9Sanati, M., & Andersson, A. (1990). Ammoxtoation of toluene over TiO2(B)-supported vanadium oxide catalysts. Journal of Molecular Catalysis, 59(2), 233-255. doi:10.1016/0304-5102(90)85055-mSoriano, M. D., Chieregato, A., Zamora, S., Basile, F., Cavani, F., & López Nieto, J. M. (2015). Promoted Hexagonal Tungsten Bronzes as Selective Catalysts in the Aerobic Transformation of Alcohols: Glycerol and Methanol. Topics in Catalysis, 59(2-4), 178-185. doi:10.1007/s11244-015-0440-7SOLSONA, B., DEJOZ, A., GARCIA, T., CONCEPCION, P., NIETO, J., VAZQUEZ, M., & NAVARRO, M. (2006). Molybdenum–vanadium supported on mesoporous alumina catalysts for the oxidative dehydrogenation of ethane. Catalysis Today, 117(1-3), 228-233. doi:10.1016/j.cattod.2006.05.025Spałek, T., Pietrzyk, P., & Sojka, Z. (2004). Application of the Genetic Algorithm Joint with the Powell Method to Nonlinear Least-Squares Fitting of Powder EPR Spectra. Journal of Chemical Information and Modeling, 45(1), 18-29. doi:10.1021/ci049863sPietrzyk, P., & Góra-Marek, K. (2016). Paramagnetic dioxovanadium(iv) molecules inside the channels of zeolite BEA – EPR screening of VO2 reactivity toward small gas-phase molecules. Physical Chemistry Chemical Physics, 18(14), 9490-9496. doi:10.1039/c6cp01046fShaikh, S. F., Kalanur, S. S., Mane, R. S., & Joo, O.-S. (2013). Monoclinic WO3 nanorods–rutile TiO2 nanoparticles core–shell interface for efficient DSSCs. Dalton Transactions, 42(28), 10085. doi:10.1039/c3dt50728aSzilágyi, I. M., Madarász, J., Pokol, G., Király, P., Tárkányi, G., Saukko, S., … Varga-Josepovits, K. (2008). Stability and Controlled Composition of Hexagonal WO3. Chemistry of Materials, 20(12), 4116-4125. doi:10.1021/cm800668xCHAN, S. (1985). Laser Raman characterization of tungsten oxide supported on alumina: Influence of calcination temperatures. Journal of Catalysis, 92(1), 1-10. doi:10.1016/0021-9517(85)90231-3G. Deo , F. D.Hardcastle , M.Richards , A. M.Hirt and I. E.Wachs , ACS Symposium Series, in Novel Materials in Heterogeneous Catalysis , ed. R. Baker , et al. , American Chemical Society , Washington, DC , 1990 , p. 317França, M. C. K., da Silva San Gil, R. A., & Eon, J.-G. (2003). Alumina-supported catalysts for propane oxidative dehydrogenation from mixed VXM(6−X)O19n− (M=W, Mo) hexametalate precursors. Catalysis Today, 78(1-4), 105-115. doi:10.1016/s0920-5861(02)00302-4Catana, G., Rao, R. R., Weckhuysen, B. M., Van Der Voort, P., Vansant, E., & Schoonheydt, R. A. (1998). Supported Vanadium Oxide Catalysts: Quantitative Spectroscopy, Preferential Adsorption of V4+/5+, and Al2O3 Coating of Zeolite Y. The Journal of Physical Chemistry B, 102(41), 8005-8012. doi:10.1021/jp981482sBrückner, A. (2010). In situ electron paramagnetic resonance: a unique tool for analyzing structure–reactivity relationships in heterogeneous catalysis. Chemical Society Reviews, 39(12), 4673. doi:10.1039/b919541fBrückner, A. (2006). Spin–spin exchange in vanadium-containing catalysts studied by in situ-EPR: a sensitive monitor for disorder-related activity. Topics in Catalysis, 38(1-3), 133-139. doi:10.1007/s11244-006-0078-6Strassberger, Z., Ramos-Fernandez, E. V., Boonstra, A., Jorna, R., Tanase, S., & Rothenberg, G. (2013). Synthesis, characterization and testing of a new V2O5/Al2O3–MgO catalyst for butane dehydrogenation and limonene oxidation. Dalton Transactions, 42(15), 5546. doi:10.1039/c3dt32954bKompio, P. G. W. A., Brückner, A., Hipler, F., Auer, G., Löffler, E., & Grünert, W. (2012). A new view on the relations between tungsten and vanadium in V2O5WO3/TiO2 catalysts for the selective reduction of NO with NH3. Journal of Catalysis, 286, 237-247. doi:10.1016/j.jcat.2011.11.008Concepción, P., Knözinger, H., López Nieto, J. M., & Martínez-Arias, A. (2002). Characterization of Supported Vanadium Oxide Catalysts. Nature of the Vanadium Species in Reduced Catalysts. The Journal of Physical Chemistry B, 106(10), 2574-2582. doi:10.1021/jp010918sSilversmit, G., Depla, D., Poelman, H., Marin, G. B., & De Gryse, R. (2004). Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+). Journal of Electron Spectroscopy and Related Phenomena, 135(2-3), 167-175. doi:10.1016/j.elspec.2004.03.004Suchorski, Y., Rihko-Struckmann, L., Klose, F., Ye, Y., Alandjiyska, M., Sundmacher, K., & Weiss, H. (2005). Evolution of oxidation states in vanadium-based catalysts under conventional XPS conditions. Applied Surface Science, 249(1-4), 231-237. doi:10.1016/j.apsusc.2004.11.083KLOSE, F., WOLFF, T., LORENZ, H., SEIDELMORGENSTERN, A., SUCHORSKI, Y., PIORKOWSKA, M., & WEISS, H. (2007). Active species on γ-alumina-supported vanadia catalysts: Nature and reducibility. Journal of Catalysis, 247(2), 176-193. doi:10.1016/j.jcat.2007.01.013Hess, C., Tzolova-Müller, G., & Herbert, R. (2007). The Influence of Water on the Dispersion of Vanadia Supported on Silica SBA-15:  A Combined XPS and Raman Study. The Journal of Physical Chemistry C, 111(26), 9471-9479. doi:10.1021/jp0713920Liu, Y., Shrestha, S., & Mustain, W. E. (2012). Synthesis of Nanosize Tungsten Oxide and Its Evaluation as an Electrocatalyst Support for Oxygen Reduction in Acid Media. ACS Catalysis, 2(3), 456-463. doi:10.1021/cs200657wNieto, J. M. L. (2006). The selective oxidative activation of light alkanes. From supported vanadia to multicomponent bulk V-containing catalysts. Topics in Catalysis, 41(1-4), 3-15. doi:10.1007/s11244-006-0088-

    Hygrothermal behavior for a clay brick wall

    No full text
    International audienc

    EmTIP, a T-Cell Immunomodulatory Protein Secreted by the Tapeworm Echinococcus multilocularis Is Important

    Get PDF
    Background Alveolar echinococcosis (AE), caused by the metacestode of the tapeworm Echinococcus multilocularis, is a lethal zoonosis associated with host immunomodulation. T helper cells are instrumental to control the disease in the host. Whereas Th1 cells can restrict parasite proliferation, Th2 immune responses are associated with parasite proliferation. Although the early phase of host colonization by E. multilocularis is dominated by a potentially parasitocidal Th1 immune response, the molecular basis of this response is unknown. Principal Findings We describe EmTIP, an E. multilocularis homologue of the human T-cell immunomodulatory protein, TIP. By immunohistochemistry we show EmTIP localization to the intercellular space within parasite larvae. Immunoprecipitation and Western blot experiments revealed the presence of EmTIP in the excretory/secretory (E/S) products of parasite primary cell cultures, representing the early developing metacestode, but not in those of mature metacestode vesicles. Using an in vitro T-cell stimulation assay, we found that primary cell E/S products promoted interferon (IFN)-γ release by murine CD4+ T-cells, whereas metacestode E/S products did not. IFN-γ release by T-cells exposed to parasite products was abrogated by an anti-EmTIP antibody. When recombinantly expressed, EmTIP promoted IFN-γ release by CD4+ T-cells in vitro. After incubation with anti-EmTIP antibody, primary cells showed an impaired ability to proliferate and to form metacestode vesicles in vitro. Conclusions We provide for the first time a possible explanation for the early Th1 response observed during E. multilocularis infections. Our data indicate that parasite primary cells release a T-cell immunomodulatory protein, EmTIP, capable of promoting IFN-γ release by CD4+ T-cells, which is probably driving or supporting the onset of the early Th1 response during AE. The impairment of primary cell proliferation and the inhibition of metacestode vesicle formation by anti-EmTIP antibodies suggest that this factor fulfills an important role in early E. multilocularis development within the intermediate host
    corecore