92 research outputs found
Mesocosm experiments reveal the impact of mosquito control measures on malaria vector life history and population dynamics
The impact of control measures on mosquito vector fitness and demography is usually estimated from bioassays or indirect variables in the field. Whilst indicative, neither approach is sufficient to quantify the potentially complex response of mosquito populations to combined interventions. Here, large replicated mesocosms were used to measure the population-level response of the malaria vector Anopheles arabiensis to long-lasting insecticidal nets (LLINs) when used in isolation, or combined with insecticidal eave louvers (EL), or treatment of cattle with the endectocide Ivermectin (IM). State-space models (SSM) were fit to these experimental data, revealing that LLIN introduction reduced adult mosquito survival by 91% but allowed population persistence. ELs provided no additional benefit, but IM reduced mosquito fecundity by 59% and nearly eliminated all populations when combined with LLINs. This highlights the value of IM for integrated vector control, and mesocosm population experiments combined with SSM for identifying optimal combinations for vector population elimination
Recommended from our members
Structural coupling and magnetic tuning in Mn2–x CoxP magnetocalorics for thermomagnetic power generation
Predicting tablet properties using In-Line measurements and evolutionary equation Discovery:A high shear wet granulation study
High shear wet granulation (HSWG) is widely used in tablet manufacturing mainly because of its advantages in improving flowability, powder handling, process run time, size distribution, and preventing segregation. In line process analytical technology measurements are essential in capturing detailed particle dynamics and presenting real-time data to uncover the complexity of the HSWG process and ultimately for process control. This study presents an opportunity to predict the properties of the granules and tablets through torque measurement of the granulation bowl and the force exerted on a novel force probe within the powder bed. Inline force measurements are found to be more sensitive than torque measurements to the granulation process. The characteristic force profiles present the overall fingerprint of the high shear wet granulation, in which the evolution of the granule formation can improve our understanding of the granulation process. This provides rich information relating to the properties of the granules, identification of the even distribution of the binder liquid, and potential granulation end point. Data were obtained from an experimental high shear mixer across a range of key process parameters using a face-centred surface response design of experiment (DoE). A closed-form analytical model was developed from the DOE matrix using the discovery of evolutionary equations. The model is able to provide a strong predictive indication of the expected tablet tensile strength based only on the data in-line. The use of a closed form mathematical equation carries notable advantages over other AI methodologies such as artificial neural networks, notably improved interpretability/interrogability, and minimal inference costs, thus allowing the model to be used for real-time decision making and process control. The capability of accurately predicting, in real time, the required compaction force required to achieve the desired tablet tensile strength from upstream data carries the potential to ensure compression machine settings rapidly reach and are maintained at optimal values, thus maximising efficiency and minimising waste.</p
Steroid-Refractory Acute GVHD: Predictors and Outcomes
Patients with steroid-resistant acute graft versus host disease (aGVHD) have a dismal prognosis, with mortality rates in excess of 90%. We sought to identify a subgroup of patients less likely to benefit from initial therapy with corticosteroids as well as the impact of response on day 14 on outcome. Retrospective evaluation was performed of patients with biopsy-proven aGVHD treated with corticosteroids after allogeneic HSCT at M.D. Anderson Cancer Center from 1998 through 2002 (N = 287). Overall response to first-line therapy on day 14 was 56%. Grade III-IV aGVHD and hyperacute GVHD were the most significant factors predicting failure. Patients who fail to respond to steroids by day 14 should be considered for clinical trials. Severity of aGVHD, hyperacute GVHD, and sex mismatch could be integrated into prognostic scoring systems which may allow for pretreatment identification of patients unlikely to benefit from standard therapy with corticosteroids
Envisioning environmental equity: climate change, health, and racial justice
Climate change has a broad range of health impacts and tackling climate change could be the greatest opportunity for improving global health this century. Yet conversations on climate change and health are often incomplete, giving little attention to structural discrimination and the need for racial justice. Racism kills, and climate change kills. Together, racism and climate change interact and have disproportionate effects on the lives of minoritised people both within countries and between the Global North and the Global South. This paper has three main aims. First, to survey the literature on the unequal health impacts of climate change due to racism, xenophobia, and discrimination through a scoping review. We found that racially minoritised groups, migrants, and Indigenous communities face a disproportionate burden of illness and mortality due to climate change in different contexts. Second, this paper aims to highlight inequalities in responsibility for climate change and the effects thereof. A geographical visualisation of responsibility for climate change and projected mortality and disease risk attributable to climate change per 100 000 people in 2050 was conducted. These maps visualise the disproportionate burden of illness and mortality due to climate change faced by the Global South. Our third aim is to highlight the pathways through which climate change, discrimination, and health interact in most affected areas. Case studies, testimony, and policy analysis drawn from multidisciplinary perspectives are presented throughout the paper to elucidate these pathways. The health community must urgently examine and repair the structural discrimination that drives the unequal impacts of climate change to achieve rapid and equitable action
A longitudinal single-cell atlas of anti-tumour necrosis factor treatment in inflammatory bowel disease
Precision medicine in immune-mediated inflammatory diseases (IMIDs) requires a cellular understanding of treatment response. We describe a therapeutic atlas for Crohn’s disease (CD) and ulcerative colitis (UC) following adalimumab, an anti-tumour necrosis factor (anti-TNF) treatment. We generated ~1 million single-cell transcriptomes, organised into 109 cell states, from 216 gut biopsies (41 subjects), revealing disease-specific differences. A systems biology-spatial analysis identified granuloma signatures in CD and interferon (IFN)-response signatures localising to T cell aggregates and epithelial damage in CD and UC. Pretreatment differences in epithelial and myeloid compartments were associated with remission outcomes in both diseases. Longitudinal comparisons demonstrated disease progression in nonremission: myeloid and T cell perturbations in CD and increased multi-cellular IFN signalling in UC. IFN signalling was also observed in rheumatoid arthritis (RA) synovium with a lymphoid pathotype. Our therapeutic atlas represents the largest cellular census of perturbation with the most common biologic treatment, anti-TNF, across multiple inflammatory diseases
A longitudinal single-cell atlas of anti-tumour necrosis factor treatment in inflammatory bowel disease
Precision medicine in immune-mediated inflammatory diseases (IMIDs) requires a cellular understanding of treatment response. We describe a therapeutic atlas for Crohn's disease (CD) and ulcerative colitis (UC) following adalimumab, an anti-tumour necrosis factor (anti-TNF) treatment. We generated ~1 million single-cell transcriptomes, organised into 109 cell states, from 216 gut biopsies (41 subjects), revealing disease-specific differences. A systems biology-spatial analysis identified granuloma signatures in CD and interferon (IFN)-response signatures localising to T cell aggregates and epithelial damage in CD and UC. Pretreatment differences in epithelial and myeloid compartments were associated with remission outcomes in both diseases. Longitudinal comparisons demonstrated disease progression in nonremission: myeloid and T cell perturbations in CD and increased multi-cellular IFN signalling in UC. IFN signalling was also observed in rheumatoid arthritis (RA) synovium with a lymphoid pathotype. Our therapeutic atlas represents the largest cellular census of perturbation with the most common biologic treatment, anti-TNF, across multiple inflammatory diseases.</p
Safety and Immunogenicity of an AMA-1 Malaria Vaccine in Malian Adults: Results of a Phase 1 Randomized Controlled Trial
The objective was to evaluate the safety, reactogenicity and immunogenicity of the AMA-1-based blood-stage malaria vaccine FMP2.1/AS02A in adults exposed to seasonal malaria.A phase 1 double blind randomized controlled dose escalation trial was conducted in Bandiagara, Mali, West Africa, a rural town with intense seasonal transmission of Plasmodium falciparum malaria. The malaria vaccine FMP2.1/AS02A is a recombinant protein (FMP2.1) based on apical membrane antigen-1 (AMA-1) from the 3D7 clone of P. falciparum, adjuvanted with AS02A. The comparator vaccine was a cell-culture rabies virus vaccine (RabAvert). Sixty healthy, malaria-experienced adults aged 18-55 y were recruited into 2 cohorts and randomized to receive either a half dose or full dose of the malaria vaccine (FMP2.1 25 microg/AS02A 0.25 mL or FMP2.1 50 microg/AS02A 0.5 mL) or rabies vaccine given in 3 doses at 0, 1 and 2 mo, and were followed for 1 y. Solicited symptoms were assessed for 7 d and unsolicited symptoms for 30 d after each vaccination. Serious adverse events were assessed throughout the study. Titers of anti-AMA-1 antibodies were measured by ELISA and P. falciparum growth inhibition assays were performed on sera collected at pre- and post-vaccination time points. Transient local pain and swelling were common and more frequent in both malaria vaccine dosage groups than in the comparator group. Anti-AMA-1 antibodies increased significantly in both malaria vaccine groups, peaking at nearly 5-fold and more than 6-fold higher than baseline in the half-dose and full-dose groups, respectively.The FMP2.1/AS02A vaccine had a good safety profile, was well-tolerated, and was highly immunogenic in malaria-exposed adults. This malaria vaccine is being evaluated in Phase 1 and 2 trials in children at this site
- …