42 research outputs found

    The effect of thermal processing in oil on the macromolecular integrity and acrylamide formation from starch of three potato cultivars organically fertilized

    Get PDF
    Starches from three organically produced cultivars of potato tuber (Lady Rosetta, Spunta and Voyager) have been studied in relation to (i) acrylamide production (ii) macromolecular integrity after frying with extra virgin olive oil, soybean oil and corn oil. During cultivation, a treatment involving the combination of nitrogen, phosphorus and potassium fertilization under organic farming was applied (N1, P2, K1 where Ν1 = 1.3 g Ν per plant, P2 = 5.2 g P2O5 per plant, Κ1 = 4.0 g K2O per plant). Potatoes fried in olive oil retained the highest glucose concentrations for all cultivars 0.85 ± 0.2 mmol/kg, followed by 0.48 ± 0.2 for those fried in corn oil and 0.40 ± 0.1 mmol/kg for those fried in soybean oil. The highest average fructose concentration was recorded for the samples fried in corn oil as 0.81 ± 0.2, followed by 0.80 ± 0.2 and 0.68 ± 0.3 mmol/kg for the samples fried in olive and soybean oils, respectively. Asparagine was the most abundant free amino acid in the three varieties tested, followed by glutamine and aspartic acid. The mean initial concentration of asparagine in raw potatoes tubers was 42.8 ± 1.6 mmoles kg−1 for Lady Rosetta, 34.6 ± 1.2 mmoles kg−1 (dry weight) for Spunta and 36.2 ± 2.0 mmoles kg−1 for Voyager. Lady Rosetta contained a significantly higher concentration of asparagine compared to the other two varieties (p < 0.05). The greatest quantity of acrylamide was observed in French fries derived from the potato variety Lady Rosetta when fried in soybean oil and it was 2,600 ± 440 μg/kg, followed by Spunta which was 2,280 ± 340 μg/kg and Voyager 1,120 ± 220 μg/kg. There is a significant reduction in the formation of acrylamide in the variety Voyager compared to the others (p = 0.05)

    Improvement of phenolic antioxidants and quality characteristics of virgin olive oil with the addition of enzymes and nitrogen during olive paste processing

    Get PDF
    The evolution of phenolic compounds and their contribution to the quality characteristics in virgin olive oil during fruit processing was studied with the addition of a combination of various commercial enzymes containing pectinases, polygalacturonases, cellulase and β-glucanase with or without nitrogen flush. Olive fruits (&lt;i&gt;Olea europaea&lt;/i&gt;, L.) of the cultivar Megaritiki, at the semi black pigmentation stage of maturity, were used in a 3-phase extraction system in an experiment at industrial scale. The addition of enzymes in the olive paste during processing increased the total phenol and ortho-diphenol contents, as well as some simple phenolic compounds (3,4-DHPEA, p-HPEA) and the secoiridoid derivatives (3,4-DHPEA-EDA and 3,4-DHPEAEA) in olive oil and therefore improved its oxidative stability. Furthermore, enzyme treatment ameliorated the quality parameters of the produced olive oil (acidity and peroxide value) and their sensory attributes. The use of additional N2 flush with the enzyme treatments did not improve the quality parameters of olive oil any further; however it did not affect the concentration of individual and total sterols or most of the fatty acid composition. Consequently, olive paste treatment with enzymes not only improved the quality characteristics of olive oil and enhanced the overall ogranoleptic quality, but also increased the olive oil yield.&lt;br&gt;&lt;br&gt;La evolución de los compuestos fenólicos y su contribución a las caracterísiticas de calidad de aceite de oliva virgen durante el procesado del fruto fue estudiado mediante la adición de una combinación de varias enzimas comerciales conteniendo pectinasas, poligalacturonasa, celulasa y β-glucanasa con y sin flujo de nitrógeno. Las aceitunas (&lt;i&gt;Olea europaea&lt;/i&gt;, L.) de la variedad Megaritiki, con un estado de madurez correspondiente a una pigmentación semi-negra, fueron usadas en un experimento a escala industrial mediante un sistema de extracción de 3-fase. La adición de enzimas a la pasta de aceituna durante el procesado incremento, en el aceite de oliva, el contenido total de fenoles y orto-difenoles, así como algunos compuestos fenólicos sencillos (3,4-DHPEA, p-HPEA) y derivados secoiridoides (3,4-DHPEA-EDA and 3,4-DHPEA-EA) y además mejoró su actividad oxidativa. Más aún, el tratamiento con enzimas mejoró los parámetros de calidad del aceite de oliva producido (acidez y valor de peróxidos) y sus atributos sensoriales. El uso adicional de nitrógeno en el tratamiento enzimático no mejoró los parámetros de calidad del aceite de oliva en ningún caso. Sin embargo, no afectó a la concentración individual o total de esteroles así como a la mayoría de los ácidos grasos. Consecuentemente, el tratamiento de la pasta de aceitunas con enzimas no solo mejoró las características de calidad del aceite de oliva y la calidad organoléptica global, sino que también aumento el rendimiento de aceite de oliva

    Effect of Fortification with Mushroom Polysaccharide β-Glucan on the Quality of Ovine Soft Spreadable Cheese

    No full text
    In the present work, a fresh spreadable cheese from ovine milk with or without (control) fortification with β-glucan was manufactured. β-Glucan was extracted from the mushroom Pleurotus ostreatus and its concentration in the cheese was 0.4% (w/w). The composition, biochemical, and sensory properties of the cheeses during 21 days of storage were determined. At the end of storage, cheese fortified with beta-glucan had 75.26% moisture content, 10.30% fat, 1.71% salt, and 8.50% protein. Generally, the addition of β-glucan at this concentration did not significantly affect the composition, color, and viscosity measurements or the level of proteolysis and lipolysis and the antioxidant activity of the cheeses. However, cheese fortified with β-glucan showed a higher moisture content than control cheese on the 1st and 21st day of storage while the levels of proteolysis and the sensory properties of the cheeses were unaffected. During the sensory evaluation, panelists evaluated cheese with β-glucan with higher scores regarding the flavor characteristic compared to control cheese. The major free fatty acid was acetic acid in both cheeses and its concentration was higher in cheese with β-glucan. The results of the present study could be used by the dairy industry for manufacturing new products with improved health benefits
    corecore