96 research outputs found

    Analysis of Strong-Coupling Parameters for Superfluid 3He

    Full text link
    Superfluid 3^{3}He experiments show strong deviation from the weak-coupling limit of the Ginzburg-Landau theory, and this discrepancy grows with increasing pressure. Strong-coupling contributions to the quasiparticle interactions are known to account for this effect and they are manifest in the five β\beta-coefficients of the fourth order Ginzburg-Landau free energy terms. The Ginzburg-Landau free energy also has a coefficient gzg_{z} to include magnetic field coupling to the order parameter. From NMR susceptibility experiments, we find the deviation of gzg_{z} from its weak-coupling value to be negligible at all pressures. New results for the pressure dependence of four different combinations of β\beta-coefficients, β\beta_{345}, β\beta_{12}, β\beta_{245}, and β\beta_{5} are calculated and comparison is made with theory.Comment: 6 pages, 2 figures, 1 table. Manuscript prepared for QFS200

    Impurity Effects on the A_1-A_2 Splitting of Superfluid 3He in Aerogel

    Full text link
    When liquid 3He is impregnated into silica aerogel a solid-like layer of 3He atoms coats the silica structure. The surface 3He is in fast exchange with the liquid on NMR timescales. The exchange coupling of liquid 3He quasiparticles with the localized 3He spins modifies the scattering of 3He quasiparticles by the aerogel structure. In a magnetic field the polarization of the solid spins gives rise to a splitting of the scattering cross-section of for `up' vs. `down' spin quasiparticles, relative to the polarization of the solid 3He. We discuss this effect, as well as the effects of non-magnetic scattering, in the context of a possible splitting of the superfluid transition for \uparrow\uparrow vs. \downarrow\downarrow Cooper pairs for superfluid 3He in aerogel, analogous to the A_1-A_2 splitting in bulk 3He. Comparison with the existing measurements of T_c for B< 5 kG, which show no evidence of an A_1-A_2 splitting, suggests a liquid-solid exchange coupling of order J = 0.1 mK. Measurements at higher fields, B > 20 kG, should saturate the polarization of the solid 3He and reveal the A_1-A_2 splitting.Comment: 7 pages, 3 figure

    Role of mitochondrial raft-like microdomains in the regulation of cell apoptosis

    Get PDF
    Lipid rafts are envisaged as lateral assemblies of specific lipids and proteins that dissociate and associate rapidly and form functional clusters in cell membranes. These structural platforms are not confined to the plasma membrane; indeed lipid microdomains are similarly formed at subcellular organelles, which include endoplasmic reticulum, Golgi and mitochondria, named raft-like microdomains. In addition, some components of raft-like microdomains are present within ER-mitochondria associated membranes. This review is focused on the role of mitochondrial raft-like microdomains in the regulation of cell apoptosis, since these microdomains may represent preferential sites where key reactions take place, regulating mitochondria hyperpolarization, fission-associated changes, megapore formation and release of apoptogenic factors. These structural platforms appear to modulate cytoplasmic pathways switching cell fate towards cell survival or death. Main insights on this issue derive from some pathological conditions in which alterations of microdomains structure or function can lead to severe alterations of cell activity and life span. In the light of the role played by raft-like microdomains to integrate apoptotic signals and in regulating mitochondrial dynamics, it is conceivable that these membrane structures may play a role in the mitochondrial alterations observed in some of the most common human neurodegenerative diseases, such as Amyotrophic lateral sclerosis, Huntington's chorea and prion-related diseases. These findings introduce an additional task for identifying new molecular target(s) of pharmacological agents in these pathologies

    Misfolded SOD1 Associated with Motor Neuron Mitochondria Alters Mitochondrial Shape and Distribution Prior to Clinical Onset

    Get PDF
    Mutations in superoxide dismutase (SOD1) are causative for inherited amyotrophic lateral sclerosis. A proportion of SOD1 mutant protein is misfolded onto the cytoplasmic face of mitochondria in one or more spinal cord cell types. By construction of mice in which mitochondrially targeted enhanced green fluorescent protein is selectively expressed in motor neurons, we demonstrate that axonal mitochondria of motor neurons are primary in vivo targets for misfolded SOD1. Mutant SOD1 alters axonal mitochondrial morphology and distribution, with dismutase active SOD1 causing mitochondrial clustering at the proximal side of Schmidt-Lanterman incisures within motor axons and dismutase inactive SOD1 producing aberrantly elongated axonal mitochondria beginning pre-symptomatically and increasing in severity as disease progresses. Somal mitochondria are altered by mutant SOD1, with loss of the characteristic cylindrical, networked morphology and its replacement by a less elongated, more spherical shape. These data indicate that mutant SOD1 binding to mitochondria disrupts normal mitochondrial distribution and size homeostasis as early pathogenic features of SOD1 mutant-mediated ALS

    Major histocompatibility complex class I molecules protect motor neurons from astrocyte-induced toxicity in amyotrophic lateral sclerosis

    Get PDF
    Astrocytes isolated from individuals with amyotrophic lateral sclerosis (ALS) are toxic to motor neurons (MNs) and play a non–cell autonomous role in disease pathogenesis. The mechanisms underlying the susceptibility of MNs to cell death remain unclear. Here we report that astrocytes derived from either mice bearing mutations in genes associated with ALS or human subjects with ALS reduce the expression of major histocompatibility complex class I (MHCI) molecules on MNs; reduced MHCI expression makes these MNs susceptible to astrocyte-induced cell death. Increasing MHCI expression on MNs increases survival and motor performance in a mouse model of ALS and protects MNs against astrocyte toxicity. Overexpression of a single MHCI molecule, HLA-F, protects human MNs from ALS astrocyte–mediated toxicity, whereas knockdown of its receptor, the killer cell immunoglobulin-like receptor KIR3DL2, on human astrocytes results in enhanced MN death. Thus, our data indicate that, in ALS, loss of MHCI expression on MNs renders them more vulnerable to astrocyte-mediated toxicity

    Aberrant Localization of FUS and TDP43 Is Associated with Misfolding of SOD1 in Amyotrophic Lateral Sclerosis

    Get PDF
    Background: Amyotrophic lateral sclerosis (ALS) is incurable and characterized by progressive paralysis of the muscles of the limbs, speech and swallowing, and respiration due to the progressive degeneration of voluntary motor neurons. Clinically indistinguishable ALS can be caused by genetic mutations of Cu/Zn superoxide dismutase (SOD1), TAR-DNA binding protein 43 (TDP43), or fused in sarcoma/translocated in liposarcoma (FUS/TLS), or can occur in the absence of known mutation as sporadic disease. In this study, we tested the hypothesis that FUS/TLS and TDP43 gain new pathogenic functions upon aberrant accumulation in the cytosol that directly or indirectly include misfolding of SOD1. Methodology/Principal Findings: Patient spinal cord necropsy immunohistochemistry with SOD1 misfolding-specific antibodies revealed misfolded SOD1 in perikarya and motor axons of SOD1-familial ALS (SOD1-FALS), and in motor axons of R521C-FUS FALS and sporadic ALS (SALS) with cytoplasmic TDP43 inclusions. SOD1 misfolding and oxidation was also detected using immunocytochemistry and quantitative immunoprecipitation of human neuroblastoma SH-SY5Y cells as well as cultured murine spinal neural cells transgenic for human wtSOD1, which were transiently transfected with human cytosolic mutant FUS or TDP43, or wtTDP43. Conclusion/Significance: We conclude that cytosolic mislocalization of FUS or TDP43 in vitro and ALS in vivo may kindle wtSOD1 misfolding in non-SOD1 FALS and SALS. The lack of immunohistochemical compartmental co-localization o

    Direct Observation of Defects and Increased Ion Permeability of a Membrane Induced by Structurally Disordered Cu/Zn-Superoxide Dismutase Aggregates

    Get PDF
    Interactions between protein aggregates and a cellular membrane have been strongly implicated in many protein conformational diseases. However, such interactions for the case of Cu/Zn superoxide dismutase (SOD1) protein, which is related to fatal neurodegenerative disorder amyotrophic lateral sclerosis (ALS), have not been explored yet. For the first time, we report the direct observation of defect formation and increased ion permeability of a membrane induced by SOD1 aggregates using a supported lipid bilayer and membrane patches of human embryonic kidney cells as model membranes. We observed that aggregated SOD1 significantly induced the formation of defects within lipid membranes and caused the perturbation of membrane permeability, based on surface plasmon resonance spectroscopy, atomic force microscopy and electrophysiology. In the case of apo SOD1 with an unfolded structure, we found that it bound to the lipid membrane surface and slightly perturbed membrane permeability, compared to other folded proteins (holo SOD1 and bovine serum albumin). The changes in membrane integrity and permeability were found to be strongly dependent on the type of proteins and the amount of aggregates present. We expect that the findings presented herein will advance our understanding of the pathway by which structurally disordered SOD1 aggregates exert toxicity in vivo

    Modeling mitochondrial dysfunctions in the brain: from mice to men

    Get PDF
    The biologist Lewis Thomas once wrote: “my mitochondria comprise a very large proportion of me. I cannot do the calculation, but I suppose there is almost as much of them in sheer dry bulk as there is the rest of me”. As humans, or indeed as any mammal, bird, or insect, we contain a specific molecular makeup that is driven by vast numbers of these miniscule powerhouses residing in most of our cells (mature red blood cells notwithstanding), quietly replicating, living independent lives and containing their own DNA. Everything we do, from running a marathon to breathing, is driven by these small batteries, and yet there is evidence that these molecular energy sources were originally bacteria, possibly parasitic, incorporated into our cells through symbiosis. Dysfunctions in these organelles can lead to debilitating, and sometimes fatal, diseases of almost all the bodies’ major organs. Mitochondrial dysfunction has been implicated in a wide variety of human disorders either as a primary cause or as a secondary consequence. To better understand the role of mitochondrial dysfunction in human disease, a multitude of pharmacologically induced and genetically manipulated animal models have been developed showing to a greater or lesser extent the clinical symptoms observed in patients with known and unknown causes of the disease. This review will focus on diseases of the brain and spinal cord in which mitochondrial dysfunction has been proven or is suspected and on animal models that are currently used to study the etiology, pathogenesis and treatment of these diseases
    corecore