319 research outputs found

    Jet array impingement flow distributions and heat transfer characteristics. Effects of initial crossflow and nonuniform array geometry

    Get PDF
    Two-dimensional arrays of circular air jets impinging on a heat transfer surface parallel to the jet orifice plate are considered. The jet flow, after impingement, is constrained to exit in a single direction along the channel formed by the jet orifice plate and the heat transfer surface. The configurations considered are intended to model those of interest in current and contemplated gas turbine airfoil midchord cooling applications. The effects of an initial crossflow which approaches the array through an upstream extension of the channel are considered. Flow distributions as well as heat transfer coefficients and adiabatic wall temperatures resolved to one streamwise hole spacing were measured as a function of the initial crossflow rate and temperature relative to the jet flow rate and temperature. Both Nusselt number profiles and dimensionless adiabatic wall temperature (effectiveness) profiles are presented and discussed. Special test results which show a significant reduction of jet orifice discharge coefficients owing to the effect of a confined crossflow are also presented, along with a flow distribution model which incorporates those effects. A nonuniform array flow distribution model is developed and validated

    Charge ordering in the spinels AlV2_2O4_4 and LiV2_2O4_4

    Full text link
    We develop a microscopic theory for the charge ordering (CO) transitions in the spinels AlV2_2O4_4 and LiV2_2O4_4 (under pressure). The high degeneracy of CO states is lifted by a coupling to the rhombohedral lattice deformations which favors transition to a CO state with inequivalent V(1) and V(2) sites forming Kagom\'e and trigonal planes respectively. We construct an extended Hubbard type model including a deformation potential which is treated in unrestricted Hartree Fock approximation and describes correctly the observed first-order CO transition. We also discuss the influence of associated orbital order. Furthermore we suggest that due to different band fillings AlV2_2O4_4 should remain metallic while LiV2_2O4_4 under pressure should become a semiconductor when charge disproportionation sets in

    Classical generalized constant coupling model for geometrically frustrated antiferromagnets

    Full text link
    A generalized constant coupling approximation for classical geometrically frustrated antiferromagnets is presented. Starting from a frustrated unit we introduce the interactions with the surrounding units in terms of an internal effective field which is fixed by a self consistency condition. Results for the magnetic susceptibility and specific heat are compared with Monte Carlo data for the classical Heisenberg model for the pyrochlore and kagome lattices. The predictions for the susceptibility are found to be essentially exact, and the corresponding predictions for the specific heat are found to be in very good agreement with the Monte Carlo results.Comment: 4 pages, 3 figures, 2 columns. Discussion about the zero T value of the pyrochlore specific heat correcte

    Hole-doping effects on a frustrated spin ladder

    Full text link
    Hole-doping effects are investigated on the {\it t-J} ladder model with the linked-tetrahedra structure. We discuss how a metal-insulator transition occurs upon hole doping with particular emphasis on the effects of geometrical frustration. By computing the electron density and the spin correlation function by the density matrix renormalization group, we show that strong frustration triggers a first-order transition to a metallic phase, when holes are doped into the plaquette-singlet phase. By examining spin excitations in a metallic case in detail, we discuss whether the spin-gap phase persists upon hole doping according to the strength of frustration. It is further shown that the lowest excited state in a spin-gap metallic phase can be described in two independent quasiparticles.Comment: 7 pages, 9 figure

    Spectral functions in itinerant electron systems with geometrical frustration

    Full text link
    The Hubbard model with geometrical frustration is investigated in a metallic phase close to half-filling. We calculate the single particle spectral function for the triangular lattice within dynamical cluster approximation, which is further combined with non-crossing approximation and fluctuation exchange approximation to treat the resulting cluster Anderson model. It is shown that frustration due to non-local correlations suppresses short-range antiferromagnetic fluctuations and thereby assists the formation of heavy quasi-particles near half-filling.Comment: 4 pages, 5 eps figure

    Quantum generalized constant coupling model for geometrically frustrated antiferromagnets

    Full text link
    A generalized constant coupling approximation for quantum geometrically frustrated antiferromagnets is presented. Starting from a frustrated unit, we introduce the interactions with the surrounding units in terms of an internal effective field which is fixed by a self consistency condition. Results for the static magnetic susceptibility and specific heat are compared with previous results in the framework of this same model for the classical limit. The range of applicability of the model is discussed.Comment: 11 pages, 6 figures, 1 Tables, typeset using RevTeX 4, small correction in Table

    Stability of a metallic state in the two-orbital Hubbard model

    Full text link
    Electron correlations in the two-orbital Hubbard model at half-filling are investigated by combining dynamical mean field theory with the exact diagonalization method. We systematically study how the interplay of the intra- and inter-band Coulomb interactions, together with the Hund coupling, affects the metal-insulator transition. It is found that if the intra- and inter-band Coulomb interactions are nearly equal, the Fermi-liquid state is stabilized due to orbital fluctuations up to fairly large interactions, while the system is immediately driven to the Mott insulating phase away from this condition. The effects of the isotropic and anisotropic Hund coupling are also addressed.Comment: 7 pages, 9 figure

    Metal-insulator transition in the two-orbital Hubbard model at fractional band fillings: Self-energy functional approach

    Full text link
    We investigate the infinite-dimensional two-orbital Hubbard model at arbitrary band fillings. By means of the self-energy functional approach, we discuss the stability of the metallic state in the systems with same and different bandwidths. It is found that the Mott insulating phases are realized at commensurate band fillings. Furthermore, it is clarified that the orbital selective Mott phase with one orbital localized and the other itinerant is stabilized even at fractional band fillings in the system with different bandwidths.Comment: 7 pages, 10 figure
    • …
    corecore