161 research outputs found

    Asymptotics of basic Bessel functions and q-Laguerre polynomials

    Get PDF
    AbstractWe establish a large n complete asymptotic expansion for q-Laguerre polynomials and a complete asymptotic expansion for a q-Bessel function of large argument. These expansions are needed in our study of an exactly solvable random transfer matrix model for disordered electronic systems. We also give a new derivation of an asymptotic formula due to Littlewood (1907)

    Electrical-field activated sintering and forming of micro-components

    Get PDF
    As the demand for miniature products has increased significantly, so also has the need for these products to be produced in a rapid, flexible and cost efficient manner. The application of electroplasticity shows significant potential to produce the components by using powder materials. Nevertheless, previous research has shown that there are still significant challenges to be met in order to achieve increased relative densification of product samples and simplification of the processes. The process concept in this study comprises the combination of electrical-field activated sintering and forming processes. Therefore, the aims of the research were to develop the process concept for the manufacture of micro-components and to design the die sets along with other tooling for machine setup to enable the forming of micro-components from powder materials. A comprehensive literature review on micro-manufacturing, size effects, powder metallurgy and the electroplasticity process has been conducted. The development of the die sets for the process has been described, followed by a series of experiments. The FE thermal-electrical analysis was also carried out to study the heating flows of the die sets development during the process. In this research, titanium (Ti) and titanium tin alloy (90Ti10Sn) have been selected for the main powder materials tested for both vacuum and open-air process environment by using a Gleeble® 3800 testing system and Projection Welding machine respectively. Meanwhile, for the additional experiment, copper (Cu) has been selected to be tested in the open-air process environment by using a Projection Welding machine with die sets prepared by the Micro-FAST project. Based on the data collected, this efficient process has the potential to produce components with a high relative density of around 98%. Changes of the particles concerning deformation and breaking are crucial in the course of achieving the densification which differs from a conventional sintering process

    Ergonomic Assessments of Laboratory Working with Seating and Standing Postures

    Get PDF
    Ergonomics is important to ensure that the worker can work in the safe condition whether they work in standing, sitting, walking and so on. The use of ergonomics study is to improve the workers safety and health, increase job satisfaction and enhances performance. Lack of ergonomics criteria in workspace and workstation design can cause physical and biological hazards to the workers. Ergonomics evaluations in industrial setting have recently received increased attention due to the cost incurred as a result of repetitive motion injuries. When we are working, the most common position involved is whether standing or seating. Working in seating position is widely available in the office and assembly line at the manufacturing floor. Because of some particular reason, working in standing position also widely used in manufacturing floor. Many industrial companies today have changed their plant layout to fit with standing operator. This paper reports on the impact of the types of handling the work station design, have specific ergonomic risk factors identified in these tasks. The field of study is focused on ergonomic problems encountered for every machine and workstation at the engineering school associated with the laboratory practicals in these labs. A welldesigned workspace must be safe, efficient, satisfying to use, pleasant, durable, and users to interact safely. The results of this study create an ergonomics awareness with all staff and student of laboratory working with seating and standing postures

    Photovoltaic technologies photo-thermal challenges: Thin active layer solar cells significance

    Get PDF
    Massive energy demand and source of energy usages is the key root of global emission and climate change. Solar photovoltaic (PV) is low carbon energy technology currently 3.2% share of global electricity supply. The rapid progress of solar PV is vastly related to increase energy efficiency and lessening of active materials usage. This paper solar PV present significance and most prospective PV materials technical challenges are reviewed for its future advancement. Among the challenges solar energy absorption-related dynamic photo-thermal effect on cells or modules is vital. Transparent passivation contact materials with lower temperature coefficient (TC) and thin active layer resulted in lowering both dynamic photo-thermal outcome and optical to electrical energy gap. Thin active layer minor bulk recombination and sub-band parasitic absorption lessening purpose transparent conductive materials (TCM) based proper band barrier heterointerface is impending. It can optimize desired band absorption and photo-coupling with selective carrier induces greater efficiency. Earlier research though explains it on carrier selectivity prejudice, but how it can lessen the near infrared band optical and associated thermal influence is essential to illustrated. Passivation and TC interrelations hence, field related drift is control over diffusion process loss in advanced bifacial and thin active layer PV technology. Loss lessening pathways thin wafer-based Si, thin film CdTe, organic and perovskite photo coupling with advanced TCM, thus, Si/CdTe and Si/perovskite tandem cells along with OSC building integrated transparent photovoltaic technologies advancement pathways are reported

    Orbital and spin contributions to the gg-tensors in metal nanoparticles

    Full text link
    We present a theoretical study of the mesoscopic fluctuations of gg-tensors in a metal nanoparticle. The calculations were performed using a semi-realistic tight-binding model, which contains both spin and orbital contributions to the gg-tensors. The results depend on the product of the spin-orbit scattering time τso\tau_{\textrm{\small so}} and the mean-level spacing δ\delta, but are otherwise weakly affected by the specific shape of a {\it generic} nanoparticle. We find that the spin contribution to the gg-tensors agrees with Random Matrix Theory (RMT) predictions. On the other hand, in the strong spin-orbit coupling limit δτso/0\delta \tau_{\textrm{\small so}}/\hbar \to 0, the orbital contribution depends crucially on the space character of the quasi-particle wavefunctions: it levels off at a small value for states of dd character but is strongly enhanced for states of spsp character. Our numerical results demonstrate that when orbital coupling to the field is included, RMT predictions overestimate the typical gg-factor of orbitals that have dominant dd-character. This finding points to a possible source of the puzzling discrepancy between theory and experiment.Comment: 21 pages, 6 figures; accepted for publication in Physical Review

    Numerical study of nSi and nSiGe solar cells: Emerging microstructure nSiGe cell achieved the highest 8.55% efficiency

    Get PDF
    This paper reports about the comparative study of nSi and nSiGe microstructure materials opto-electrical energy conversion prospect. The significance of nSiGe thin active laye in organic-inorganic heterojunction (HJ) solar cell efficiency progression is illustrated. Transparent and carrier selective top contact purposes p-type un-doped organic materials are promising for low processing cost n-Si HJ solar cell. Near infrared band absorption enrichment by Ge inclusion in n-Si thin active layer is a new design approach. p-PTAA/n-Si PV device modelling and it electrical properties are investigated by using SCAPS simulator. Thin Si active layer solar cell is commercially important. However, thin layer absorption related technological shortcoming overcoming approaches 10% Ge content impact is studied in this work. Moreover, SiO2 nanomaterial passivated p-PTAA/SiO2/ n-SiGe and p-PTAA/SiO2/n-Si models active layer thickness and operating temperature effects have also been studied. The current-voltage (J-V) characteristics analysis is realized that nSiGe cell is potential for the progression of current density and efficiency. SiO2 nanomaterial passivated 3 μm SiGe microstructure cell is realized promising to increase 48.1 mA/cm2 of current density. The highest 8.55% efficiency is achieved for 2 nm SiO2 passivation and 20 nm of PTAA emitter

    Spectral properties of a generalized chGUE

    Full text link
    We consider a generalized chiral Gaussian Unitary Ensemble (chGUE) based on a weak confining potential. We study the spectral correlations close to the origin in the thermodynamic limit. We show that for eigenvalues separated up to the mean level spacing the spectral correlations coincide with those of chGUE. Beyond this point, the spectrum is described by an oscillating number variance centered around a constant value. We argue that the origin of such a rigid spectrum is due to the breakdown of the translational invariance of the spectral kernel in the bulk of the spectrum. Finally, we compare our results with the ones obtained from a critical chGUE recently reported in the literature. We conclude that our generalized chGUE does not belong to the same class of universality as the above mentioned model.Comment: 12 pages, 3 figure

    Evaluation of sesamum gum as an excipient in matrix tablets

    Get PDF
    In developing countries modern medicines are often beyond the affordability of the majority of the population. This is due to the reliance on expensive imported raw materials despite the abundance of natural resources which could provide an equivalent or even an improved function. The aim of this study was to investigate the potential of sesamum gum (SG) extracted from the leaves of Sesamum radiatum (readily cultivated in sub-Saharan Africa) as a matrix former. Directly compressed matrix tablets were prepared from the extract and compared with similar matrices of HPMC (K4M) using theophylline as a model water soluble drug. The compaction, swelling, erosion and drug release from the matrices were studied in deionized water, 0.1 N HCl (pH 1.2) and phosphate buffer (pH 6.8) using USP apparatus II. The data from the swelling, erosion and drug release studies were also fitted into the respective mathematical models. Results showed that the matrices underwent a combination of swelling and erosion, with the swelling action being controlled by the rate of hydration in the medium. SG also controlled the release of theophylline similar to the HPMC and therefore may have use as an alternative excipient in regions where Sesamum radiatum can be easily cultivated

    Comprehensive analysis of epigenetic clocks reveals associations between disproportionate biological ageing and hippocampal volume

    Get PDF
    The concept of age acceleration, the difference between biological age and chronological age, is of growing interest, particularly with respect to age-related disorders, such as Alzheimer’s Disease (AD). Whilst studies have reported associations with AD risk and related phenotypes, there remains a lack of consensus on these associations. Here we aimed to comprehensively investigate the relationship between five recognised measures of age acceleration, based on DNA methylation patterns (DNAm age), and cross-sectional and longitudinal cognition and AD-related neuroimaging phenotypes (volumetric MRI and Amyloid-β PET) in the Australian Imaging, Biomarkers and Lifestyle (AIBL) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Significant associations were observed between age acceleration using the Hannum epigenetic clock and cross-sectional hippocampal volume in AIBL and replicated in ADNI. In AIBL, several other findings were observed cross-sectionally, including a significant association between hippocampal volume and the Hannum and Phenoage epigenetic clocks. Further, significant associations were also observed between hippocampal volume and the Zhang and Phenoage epigenetic clocks within Amyloid-β positive individuals. However, these were not validated within the ADNI cohort. No associations between age acceleration and other Alzheimer’s disease-related phenotypes, including measures of cognition or brain Amyloid-β burden, were observed, and there was no association with longitudinal change in any phenotype. This study presents a link between age acceleration, as determined using DNA methylation, and hippocampal volume that was statistically significant across two highly characterised cohorts. The results presented in this study contribute to a growing literature that supports the role of epigenetic modifications in ageing and AD-related phenotypes
    corecore