17 research outputs found

    MOUTHGUARD EFFICACY IN BASEBALL PITCHING VELOCITY

    Get PDF
    Successful pitching in baseball may be due to several factors including the mechanics of the motion, the strength, power, flexibility of the athlete, as well as their intent and fatigue levels. The pitching motion is a very powerful, violent, complex and abnormal range of motion of the body. In recent studies, it has been widely evidenced that the ability to produce instantaneous high peak force outputs is related to success in sport. Therefore, the ability to produce higher peak force may be related to the ability to pitching in baseball. Mouthguards have been shown to significantly increase power production in several dynamic exercise movements. The purpose of this study was to determine if maximal and average pitching velocity could be increased when wearing a mouthguard. Twenty-two male collegiate baseball pitchers participated in this study (age: 19.9 years old ± 1.4 years, body mass: 87.1 Kg ± 11.6 Kg, body height: 182.5 cm ± 6.1 cm). All study participants were competitive athletes at the NCAA Division 1, Division 3, or University Varsity Club level. Pitching velocity changes resulted in a mean increase of 0.732 km/h for all groups. Velocity change for each level tested resulted in mean increases of 1.652, 0.402, and 0.370 km/h for the university club, Division 3 and Division 1 levels, respectively. The results of a paired samples t-test analysis showed that there was a statistically significant improvement when using a mouthguard in pitching velocity across all groups combined; t (109) = 2.958, p = 0.004. Further, university club level pitchers experienced a statistically significant improvement; t(29) = 5.972, p = 0.000; while Division 3; t(39) = 0.772, p = 0.445; and Division 1; t(39) = 1.014, p = 0.317; players did not show a statistically significant improvement with the mouthguard. The authors found that a mouthguard may improve throwing velocity in male collegiate baseball athletes. These findings could be useful to both coaches and sport performance specialists that are working with pitchers to bring about increases in power output and subsequent increases in pitching velocity, simply by implementing the use of a mouthguard

    Letter to the Chairmen of Departments and the College Staff from the Project Curriculum Committee

    Full text link
    Correspondence to the Brooklyn College Chairmen of Departments pertaining to courses suitable for older students enrolling in the 1944 Farm Labor Project. The letter is written by Ethel Iskowitz, the student chariman and R.C. Benedict, the staff chairman of the Project Curriculum Committee. February 25, 1944

    Welcome to "Women's Health," a new e-book from MM&M

    No full text

    FW: Are you making as much as your peers?

    No full text

    KINS 499 Mouthguard Use on Throwing Velocity

    No full text
    Successful pitching in baseball may be due to several factors including the mechanics of the motion, the strength, power, flexibility of the athlete, as well as their intent and fatigue levels. The pitching motion is a very powerful, violent, complex and abnormal range of motion of the body. In recent studies, it has been widely evidenced that the ability to produce instantaneous high peak force outputs is related to success in sport. Therefore, the ability to produce higher peak force may be related to the ability to pitching in baseball. Mouthguards have been shown to significantly increase power production in several dynamic exercise movements. The purpose of this study was to determine if maximal and average pitching velocity could be increased when wearing a mouthguard. Twenty-two male collegiate baseball pitchers participated in this study (age: 19.9 years old ± 1.4 years, body mass: 87.1 Kg ± 11.6 Kg, body height: 182.5 cm ± 6.1 cm). All study participants were competitive athletes at the NCAA Division 1, Division 3, or University Varsity Club level. Pitching velocity changes resulted in a mean increase of 0.732 km/h for all groups. Velocity change for each level tested resulted in mean increases of 1.652, 0.402, and 0.370 km/h for the university club, Division 3 and Division 1 levels, respectively. The results of a paired samples t-test analysis showed that there was a statistically significant improvement when using a mouthguard in pitching velocity across all groups combined; t (109) = 2.958, p = 0.004. Further, university club level pitchers experienced a statistically significant improvement; t(29) = 5.972, p = 0.000; while Division 3; t(39) = 0.772, p = 0.445; and Division 1; t(39) = 1.014, p = 0.317; players did not show a statistically significant improvement with the mouthguard. The authors found that a mouthguard may improve throwing velocity in male collegiate baseball athletes. These findings could be useful to both coaches and sport performance specialists that are working with pitchers to bring about increases in power output and subsequent increases in pitching velocity, simply by implementing the use of a mouthguard

    Atomic absorption spectrophotometric determination of selected elements in ferromanganese nodules from the Pacific, Atlantic, and Indian Oceans

    No full text
    Twenty-one samples of deep-sea ferromanganese nodules collected from the Pacific, Atlantic, and Indian oceans were supplied by the Lamont-Doherty Geological Observatory of Columbia University and the Hawaii Institute of Geophysics, University of Hawaii. The air-dried manganese nodules were crushed with the aid of a ceramic mortar and pestle, and sorted according to particle size using a set of U.S. standard mesh sieves. Powdered nodules (100/150 ?m) in particle diameter) were dried overnight at 450°C in a Lindberg furnace, and the weight loss of the sample was measured for H2O concentration determination. Exactly 500 mg of the dehydrated samples were acid-digested in a pressurized Teflon bomb and the contents were diluted to 100 ml with 0.5 M boric acid solution. Five replicates of each nodule specimen were digested and stored in polyethylene bottle. Four aliquots of the acid-digested sample were pipetted into separate beakers to which aqueous thallium standards were added successively with Eppendorf micropipettes. Each sample solution was adjusted to pH 10.8, and the wash solution was added to the separatory funnel. Five milliliters of a 1% APDC solution and 10 ml of MIBK were pipetted into each separatory funnel. The funnels were mounted on a Kraft Model S-500 mechanical shaker and shaken at a maximum amplitude for 10 min. A Perkin-EImer 603 atomic absorption spectrophotometer equipped with Westinghouse single-element hollow cathode lamps was used together with an air-acetylene oxidizing flame and a 10-cm single slot burner for all the measurements. Thallium was determined in the APDC-MIBK extract as soon as possible after the extraction step was completed, using the primary wavelength (276.8 nm), a 16 mA lamp current, and a slit setting at 4. Other metals such as Mn, Fe, Cu, Ni, and Co were measured directly in a portion of the acid-digested samples without carrying out the solvent extraction preconcentration step

    Contemporary Canadian Painters : An Exhibition of Works from the Canada Council Art Bank = Peintres canadiens contemporains : Une exposition de la Banque d'oeuvres d'art du Conseil des Arts du Canada

    No full text
    James introduces the work of seven Canadian painters from the collection of the Canada Council Art Bank. Includes artists' statements
    corecore