3,080 research outputs found

    Binaural beats or 432 Hz music? which method is more effective for reducing preoperative dental anxiety?

    Get PDF
    The aim of this prospective clinical study was to investigate the effectiveness of binaural beats and music at a frequency of 432 Hz and compare which method is more effective for reducing preoperative dental anxiety in impacted third molar surgery. Ninety patients were randomly selected to the binaural beats group, music group and control group. Visual analog scale used to evaluate dental anxiety before the local anesthesia in the first measurement. Local anesthesia was applied to the all patients. Patients in the music group listened to 432 Hz tuned music using earphones for 10 minutes. Patients in the binaural beats group listened to binaural beats using earphones (for the right ear, 220 Hz and for the left ear 210 Hz) for 10 minutes. No special treatment was applied to the patients in control group. In the second measurement, dental anxiety was measured again in all three groups. For analysis of differences between three groups was used One way Anova and Kruskal Wallis test. Twenty seven male and 53 female patients included the study. In the first measurement, the same level of anxiety was recorded in all three groups. (p=0.811) There was a significant decrease in anxiety in both the binaural beats and music group in the second measurement. (p<0.001). Binaural beats and 432 Hz tuned music are a valid non pharmacological adjuvant to reduce dental anxiety in impacted third molar surgery. They have a positive effect to reduce the dental anxiety

    Interfacial Reactions of Ozone with Surfactant Protein B in a Model Lung Surfactant System

    Get PDF
    Oxidative stresses from irritants such as hydrogen peroxide and ozone (O_3) can cause dysfunction of the pulmonary surfactant (PS) layer in the human lung, resulting in chronic diseases of the respiratory tract. For identification of structural changes of pulmonary surfactant protein B (SP-B) due to the heterogeneous reaction with O_3, field-induced droplet ionization (FIDI) mass spectrometry has been utilized. FIDI is a soft ionization method in which ions are extracted from the surface of microliter-volume droplets. We report structurally specific oxidative changes of SP-B_(1−25) (a shortened version of human SP-B) at the air−liquid interface. We also present studies of the interfacial oxidation of SP-B_(1−25) in a nonionizable 1-palmitoyl-2-oleoyl-sn-glycerol (POG) surfactant layer as a model PS system, where competitive oxidation of the two components is observed. Our results indicate that the heterogeneous reaction of SP-B_(1−25) at the interface is quite different from that in the solution phase. In comparison with the nearly complete homogeneous oxidation of SP-B_(1−25), only a subset of the amino acids known to react with ozone are oxidized by direct ozonolysis in the hydrophobic interfacial environment, both with and without the lipid surfactant layer. Combining these experimental observations with the results of molecular dynamics simulations provides an improved understanding of the interfacial structure and chemistry of a model lung surfactant system subjected to oxidative stress

    Quantum thermodynamics at critical points during melting and solidification processes

    Full text link
    We systematically explore and show the existence of finite-temperature continuous quantum phase transition (CTQPT) at a critical point, namely, during solidification or melting such that the first-order thermal phase transition is a special case within CTQPT. Infact, CTQPT is related to chemical reaction where quantum fluctuation (due to wavefunction transformation) is caused by thermal energy and it can occur maximally for temperatures much higher than zero Kelvin. To extract the quantity related to CTQPT, we use the ionization energy theory and the energy-level spacing renormalization group method to derive the energy-level spacing entropy, renormalized Bose-Einstein distribution and the time-dependent specific heat capacity. This work unambiguously shows that the quantum phase transition applies for any finite temperatures.Comment: To be published in Indian Journal of Physics (Kolkata

    Resuscitation and quantification of stressed Escherichia coli K12 NCTC8797 in water samples

    Get PDF
    The aim of this study was to investigate the impact on numbers of using different media for the enumeration of Escherichia coli subjected to stress, and to evaluate the use of different resuscitation methods on bacterial numbers. E. coli was subjected to heat stress by exposure to 55 °C for 1 h or to light-induced oxidative stress by exposure to artificial light for up to 8 h in the presence of methylene blue. In both cases, the bacterial counts on selective media were below the limits of detection whereas on non-selective media colonies were still produced. After resuscitation in non-selective media, using a multi-well MPN resuscitation method or resuscitation on membrane filters, the bacterial counts on selective media matched those on non-selective media. Heat and light stress can affect the ability of E. coli to grow on selective media essential for the enumeration as indicator bacteria. A resuscitation method is essential for the recovery of these stressed bacteria in order to avoid underestimation of indicator bacteria numbers in water. There was no difference in resuscitation efficiency using the membrane filter and multi-well MPN methods. This study emphasises the need to use a resuscitation method if the numbers of indicator bacteria in water samples are not to be underestimated. False-negative results in the analysis of drinking water or natural bathing waters could have profound health effects

    Implementation of 3 T Lactate-Edited 3D 1H MR Spectroscopic Imaging with Flyback Echo-Planar Readout for Gliomas Patients

    Get PDF
    The purpose of this study was to implement a new lactate-edited 3D 1H magnetic resonance spectroscopic imaging (MRSI) sequence at 3 T and demonstrate the feasibility of using this sequence for measuring lactate in patients with gliomas. A 3D PRESS MRSI sequence incorporating shortened, high bandwidth 180° pulses, new dual BASING lactate-editing pulses, high bandwidth very selective suppression (VSS) pulses and a flyback echo-planar readout was implemented at 3 T. Over-prescription factor of PRESS voxels was optimized using phantom to minimize chemical shift artifacts. The lactate-edited flyback sequence was compared with lactate-edited MRSI using conventional elliptical k-space sampling in a phantom and volunteers, and then applied to patients with gliomas. The results demonstrated the feasibility of detecting lactate within a short scan time of 9.5 min in both phantoms and patients. Over-prescription of voxels gave less chemical shift artifacts allowing detection of lactate on the majority of the selected volume. The normalized SNR of brain metabolites using the flyback encoding were comparable to the SNR of brain metabolites using conventional phase encoding MRSI. The specialized lactate-edited 3D MRSI sequence was able to detect lactate in brain tumor patients at 3 T. The implementation of this technique means that brain lactate can be evaluated in a routine clinical setting to study its potential as a marker for prognosis and response to therapy

    Expected benefits of genomic selection for growth and wood quality traits in Eucalyptus grandis

    Get PDF
    Genomic selection (GS) can substantially reduce breeding cycle times in forest trees compared to traditional breeding cycles. Practical implementation of GS in tree breeding requires an assessment of significant drivers of genetic gains over time, which may differ among species and breeding objectives. We present results of a GS study of growth and wood quality traits in an operational Eucalyptus grandis breeding program in South Africa. The training population consisted of 1575 full and half-sib individuals, genotyped with the Eucalyptus (EUChip60K) SNP chip resulting in 15,040 informative SNP markers. The accuracy of the GS models ranged from 0.47 (diameter) to 0.67 (fibre width). We compared a 4-year GS breeding cycle equivalent to half of a traditional 8-year E. grandis breeding cycle and obtained GS efficiencies ranging from 1.20 (wood density) to 1.62 (fibre length). Simulated over 17 years, the ratio of the accumulated genetic gains between three GS cycles and two traditional breeding cycles ranged from 1.53 (diameter) to 3.35 (wood density). To realise these genetic gains per unit time in E. grandis breeding, we show that significant adjustments have to be made to integrate GS into operational breeding steps.Mondi South Africa (Pty) Ltd: Forests: Research and Development, National Research Foundation (NRF), Department of Science and Technology: Bioinformatics and Functional Genomics Programme (BFG) and Department Trade and Industry South Africa: Technology and Human Resource Industry Programme (THRIP).http://link.springer.com/journal/112952021-06-14hj2021BiochemistryForestry and Agricultural Biotechnology Institute (FABI)GeneticsMicrobiology and Plant Patholog

    Odorant-Dependent Generation of Nitric Oxide in Mammalian Olfactory Sensory Neurons

    Get PDF
    The gaseous signalling molecule nitric oxide (NO) is involved in various physiological processes including regulation of blood pressure, immunocytotoxicity and neurotransmission. In the mammalian olfactory bulb (OB), NO plays a role in the formation of olfactory memory evoked by pheromones as well as conventional odorants. While NO generated by the neuronal isoform of NO synthase (nNOS) regulates neurogenesis in the olfactory epithelium, NO has not been implicated in olfactory signal transduction. We now show the expression and function of the endothelial isoform of NO synthase (eNOS) in mature olfactory sensory neurons (OSNs) of adult mice. Using NO-sensitive micro electrodes, we show that stimulation liberates NO from isolated wild-type OSNs, but not from OSNs of eNOS deficient mice. Integrated electrophysiological recordings (electro-olfactograms or EOGs) from the olfactory epithelium of these mice show that NO plays a significant role in modulating adaptation. Evidence for the presence of eNOS in mature mammalian OSNs and its involvement in odorant adaptation implicates NO as an important new element involved in olfactory signal transduction. As a diffusible messenger, NO could also have additional functions related to cross adaptation, regeneration, and maintenance of MOE homeostasis
    corecore