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Abstract

We consider a multi-period production problem in which a manufacturing firm produces a seasonal prod-
uct to satisfy uncertain market demand in each selling period. The firm jointly determines the production
quantity, working capital level, the amount of short-term debt, and dividends paid out to equity holders. It
also has an option to raise capital by issuing long-term debt and invest in reducing lead times. Demand
forecasts are updated according to a multiplicative martingale process. We formalize the problem by devel-
oping a Markov Decision Process (MDP) and characterize the structure of the optimal policy, which allows
us to solve the problem in polynomial time. We show that debt (equity) financing is more beneficial for the
products with low (high) demand uncertainty. Using our model, we propose a simple typology that shows
effective investment strategies in reducing the lead time depending on demand uncertainty and the value

added by production of each sub-component.

1 Motivation and Description of the Problem

It has been well established in both practice and academia that reducing lead times allows manufacturers to
increase their profits by reducing inventory costs, stock-outs, and charging higher prices for responsiveness
(Stalk 1988, Stalk & Hout 1990, Suri 1998, Iyer & Bergen 1997, Lutze & Ozer 2008). Manufacturers can reduce
production lead times in different ways, such as cutting setup times and batch sizes, increasing the capacity
of bottleneck operations, and re-engineering the production processes (Suri 1998). Suri (1998) developed a
Lead-Time-Mapping Analysis, referred to as “Manufacturing Critical-Path Time (MCT) Analysis”, that helps
decision makers reduce the production lead time. In Figure 1, we present an example of the MCT chart for a
product. One component and one sub-component are needed to process the final product. A raw material is
required to process the sub-component. The white area indicates the waiting time, the brown area represents
the processing time, whilst the pink path represents the longest time to produce the final assembly from scratch,
referred to as the “Manufacturing Critical-Path Time (MCT).” If the manufacturer places a single production

order for the final product at the beginning, where production schedules are frozen after placing the order,
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Figure 1: An MCT Chart for a Simple Manufacturing Model

the MCT value will give the production lead time. If the production schedules can be adjusted over time, the
manufacturer can postpone the production decision of some components. Therefore, the latest time to start
production of each component becomes a decision epoch. For example, the purchase order for the raw material
should be placed 24 days in advance; the production order for the sub-component should be placed 12.5 days
in advance. In such a setting, manufacturers should consider establishing a balance where some components
are kept in inventory whilst the focus for others is to reduce the production lead time. This problem also arises
in project supply chains (Seifert & Markoff 2017).

In this research, we assume that a single production order is placed at the very beginning, which also
includes the production and purchase orders of all components and raw materials. Production schedules are
frozen after placing the production order; therefore, the MCT value gives the production lead time. Suri (1998)
suggested that investments in reducing the lead time should aim to reduce the MCT. However, companies cannot
easily make such investments due to high investment costs of capacity expansion (e.g., buying a new machine
and hiring an operator) and setup-time reduction (e.g., developing automated quick changeover systems on
existing machines). Therefore, high investment costs can be regarded as a major obstacle to developing market-
responsive strategies (Wood & Heisz 2011). Nevertheless, market responsiveness reduces operational risk,

which in turn makes debt financing more accessible. This may enable firms to use external funds and invest in



reducing lead time. In this paper, we develop an analytical model that allows decision makers to analyze the

following question:
1. What is the right financing strategy for investments in reducing the production lead time?

Answering this questions not only allows decision makers to better design their supply chains but also to
better manage their firms’ financial resources. However, practitioners often adapt a singular perspective and, in
parallel, make investment decisions, which require the integration of both operational and financial dynamics of
their firms. Until recently operations research scholars paid little attention to jointly modeling operational and
financial problems (Protopappa-Sieke & Seifert 2010). A relatively new research stream lying at the interface
of operations management and finance has been aiming to fill this gap. Our research can be considered as a

contribution to this research stream.

2 Modeling Approach and Methodology

We consider a multi-period production problem in which a manufacturing firm produces a seasonal product to
satisfy uncertain demand in each period. The firm jointly determines the production quantity, working capital
level, the amount of short-term debt, and dividends paid out to equity holders. Therefore, the firm faces a
newsvendor-like problem in each period, which also includes the optimization of financial decision variables.
It also has an option at the very beginning to raise capital and invest in reducing lead time. If the firm does not
invest in reducing lead time, the production order has to be placed at the beginning of each period. The length
of each period (e.g., a year) is denoted by 7'. The firm places a single production order in each period at time
t € [0, 7], which is a decision variable depending on the lead-time-reduction investment. The production ends
in full at time 7T right before customer demand is realized. The lead time is the time elapsed between placing
the order and satisfying customer demand, which is fixed to 7" — ¢ in each period.

Our model applies to the manufacturers of fashion items (e.g., fashion apparel, toys) and innovative products
(e.g., smartphones). In the toy and electronic product industries, most of the sales occur during the Christmas
selling season, but companies need to schedule their production orders well in advance of the Christmas season
(Johnson 2001, Wingfield & Guth 2005). In the fashion apparel industry, companies sell their seasonal products
predominantly in winter or summer but order them roughly four to six months in advance of the selling season
(Gallien et al. 2015).

Demand forecasts are updated according to a multiplicative martingale process to capture the positive im-
pact of lead-time reduction. We consider the continuous-time version of the multiplicative martingale model
that can be represented by a geometric Brownian motion (Hausman 1969). Let D; denote the demand forecast

at time ¢, where p is the drift rate of the geometric Brownian motion, and o the volatility parameter. Then, the



forecast-evolution process is:

dDy = puDudt + oD dWy, 2.1
where W, is the standard Brownian motion process. We assume that the following sequence of events occurs
inperiodi € {1,2,--- ,+o0}:

1. The working capital level is equal to y; at the beginning of period i. The production quantity is not

constrained by y; because the firm may use short-term debt to cover a portion of production expenses.
2. The firm determines the production quantity ¢; during a given period at time ¢ € [0, T].

3. It may use short-term bank debt b; and immediately incur a borrowing cost p;(b;), which is a convex
increasing function of b; (i.e., p;(b;) > 0, p/(b;) > 0). Therefore, the working capital level becomes

yi + b; — p(b;) if the firm borrows b; from a bank.
4. It incurs a total production cost cq;, where c is the cost of the product per unit.
5. The production ends before the realization of actual demand.

6. Actual demand X is realized at the end of the period (i.e., £ = T'). The firm’s revenue from sales is equal
to pmin(g;, X;) + smax(q; — X;,0), where p is the product price per unit, and s denotes the salvage

value per unit.
7. The principal of short-term debt (i.e., b;) is paid to the bank.
8. Shareholders are paid v; as dividends.

The actual demand X is realized at time 7'. Demand forecast at time 7" is assumed to be fully accurate (i.e.,
Dr = X;).
We develop a Markov Decision Process (MDP) to determine the optimal production quantity, short-term

debt and dividend amounts for a given lead time and long-term debt level. We define two variables such that:

B +cQ +p(b) —y —sQ
p—s ’
B +cQ + p(b) — sQ
p—s '

2.2)

(2.3)

The firm declares bankruptcy if demand turns out to be less than £, and it makes positive profit if demand turns

out to be more that [. We have the state space such as S = {5, S1} where Sy denotes bankruptcy and S}



denotes operating states. Then, the transition probabilities are given by:

P(So|S1) = P(Dr < £), P(S1|51) = P(Dr = £), (2.4)

P(So|So) =1, P(51]5) = 0. (2.5)

Then, the Bellman equation indicating the total return to equity holders is written as follows:

VeE(So) = 0, (2.6)
VE(SI) = y%al;XB{R(Sl‘yanbaB)
+(1+70)"LP(S1]S1,9,Q, b, B)V&(S1)}, 2.7)

where R(S1|y, @, b, B) is the expected reward in state .S; conditional on y, @, b, and B.

Analytical derivations are presented in a more technical paper (Biger & Seifert 2017a). Our MDP model
can be considered as a simplified version of Li et al. (2013), except that we include a forecast-evolution process
to capture the cost of lead time. Unlike Li et al. (2013) where inventory level is a state variable, we assume that
excess inventory is salvaged at the end of each period, making the inventory level equal to zero in the beginning
of each period.

Standard methods of solving Markov Decision Processes include value-iteration and policy-iteration tech-
niques. In the value-iteration algorithm, an initial value is assigned to each state and the optimal values for all
the states are found by iterating the value function (Puterman 1994, pp. 160-164). In the policy-iteration algo-
rithm, an arbitrary policy is selected and the value for the policy is calculated. Although rewards and transition
probabilities depend on the selected policy, the value function is formulated in terms of states, not actions. To
address this disconnection, the existing policy is updated by a better policy in each iteration until the algorithm
converges (Puterman 1994, pp. 174-176). Hotz & Miller (1993) and Hotz et al. (1994) provided an alterna-
tive representation by formulating the value function in terms of conditional choice probabilities. Their model
allows estimating the value function based on agents’ behavior, without solving the dynamic programming
model. Their model has been proved to be very efficient because they eliminated the iteration of calculating
the value function and updating the policy at each step. In Bicer & Seifert (2017a), we develop analytical
expressions for the transition probabilities, rewards, and the value function in terms of actions, not states. This
allows us to eliminate the iteration of calculating the value function and updating the policy at each step. Thus,

the optimal solution can be obtained in polynomial time.



3 Results and Insights

We conducted a numerical analysis (Biger & Seifert 2017a) based on our analytical model to derive managerial
insights. We first observed that the more the demand uncertainty, the higher the value of reducing the lead time.
This result is very intuitive because it is well known in the extant literature that the value of lead-time reduction
is positively associated with demand uncertainty. Our less intuitive result is that the percentage increase in
equity holders’ payoff as a result of lead-time reduction decreases with the profit margin of the product. When
the profit margin is low, the manufacturer tends to produce very little to minimize stock-out costs. Thus, the
target (optimal) working capital level is set to very low values for low profit-margin and long lead-time values.
Reducing the lead time in such a case not only helps the firm reduce the demand risk but also favorably increase
the optimal working capital level. This leads to a substantial increase in the return to equity holders for low
profit-margin products when the lead time is reduced.

We also found that reducing the lead time is more beneficial to equity holders for lower demand uncertainty
when the investment in lead-time reduction is financed by debt in an inefficient market. This result is counter-
intuitive because it is well known that the value of lead-time reduction increases in demand uncertainty. Yet, this
effect can be fully attributed to debt financing in an inefficient market. Debt holders price the value of debt based
on the existing risk exposure of the firm in an inefficient market. After the lead time is reduced, the decrease in
the exposure to demand risk would give an additional benefit of lowering the risk to debt holders. Therefore,
equity holders do not capture the full benefits of reducing the lead time when the investment is financed by debt
in an inefficient market. The disadvantage for equity holders compared to debt holders increases proportional

to demand uncertainty.
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Figure 2: Lead-time investment typology

Based on our results, we propose a typology in Figure 2. Manufacturers are better off reducing the lead



time for high value-adding items. High value-adding items are the raw materials or components for which the
purchase or the production costs are relatively high, compared to other raw materials or components in the Bill-
of-Materials. Likewise, low value-adding items are the raw materials or components for which the purchase
or the production costs are relatively low. For low value-adding items, manufacturers can start production well
in advance to pile up inventory. The investments in reducing the lead time should be financed through equity-

financing for high demand uncertainty, whereas debt financing should be used for low demand uncertainty.

4 Future Research

A recent study in the marketing field has shown that satisfying market demand when an unexpected increase
in demand occurs (i.e., referred to as clumpy demand in marketing) is very critical to sustain profitability of
retailers (Zhang et al. 2014). Bicer et al. (2017) developed a prescriptive-analytics model to analyze the value of
reducing the lead time under demand shocks. They considered a jump-diffusion process to capture the impact
of clumpiness and applied the inverse Fourier theorem to derive optimal results. They compared the jump
model with a constant volatility model having the same level of volatility, and showed that ignoring the positive
jumps or winsorization leads to underestimation of the value of reducing the lead time. The research by Biger
et al. (2017) has shown that lead-time reduction helps companies satisfy marketing-related objectives, which
have been changing tremendously over the last decade due to the advances in information technology, online
marketing, and technology adoption of customers. However, there is still a gap in both literature and practice
such that it is necessary to develop new models to price the value of operational flexibility strategies (e.g,
lead-time reduction, sourcing flexibility, and quantity flexibility) depending on the changes in the purchasing
behavior of customers.

One of our limitations is the assumption that a single production order is placed at the beginning, and then
the production schedules are frozen. Companies that follow time-based manufacturing strategies often have
the flexibility to update production orders over time (Bigcer & Seifert 2017b). In such a setting, the latest time
to start production of each component becomes a decision epoch. In such a setting, the order quantity in each
decision epoch has an upper bound determined by the order quantity in the previous decision epoch. This
problem can be formulated as a dynamic programming (DP) model. The solution of this problem would help
to derive useful insights regarding the determination of critical operations for which investing in reducing the
lead time is highly profitable. We suggest that the analysis of this problem would be an interesting topic for

future research.
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