12 research outputs found

    Poleward Deflection of Storm Tracks

    Get PDF

    The Life Cycle of Baroclinic Eddies in a Storm Track Environment

    Get PDF

    Subpolar High Anomaly Preconditioning Precipitation over South America

    Get PDF
    The mechanisms associated with the intraseasonal variability of precipitation over South America during the spring season are investigated with emphasis on the influence of a quasi-stationary anomalous circulation over the southeastern South Pacific Ocean (SEP). A spectral analysis performed to the bandpass- filtered time series of daily precipitation anomalies for the La Plata Basin (LPB) and the South Atlantic convergence zone (SACZ) regions revealed several statistically relevant peaks corresponding to periods of roughly 23 days and 14–16 days—the lower (higher) frequency peaks more prevalent for the SACZ (LPB). The large-scale circulation patterns preconditioning precipitation variability over both regions were explored by means of a regression analysis performed on the daily 500-hPa geopotential anomaly field provided by the NCEP–NCAR reanalysis dataset. The most prominent feature of the regression fields is the presence of a quasi-stationary anomalous anticyclonic (cyclonic) circulation over the southeastern South Pacific Ocean associated with positive rainfall anomalies over the LPB (SACZ) and, emanating from that high (low), an external Rossby wave propagating northeastward toward the South American continent. The synoptic-scale activity, quantified in terms of a frontal activity index, showed a strong influence on precipitation over the LPB and to a lesser extent over the SACZ. Moreover, the frontal activity is actually modulated by the anomalous high circulation over the SEP region. The behavior of this anomalous circulation may be supported by a positive feedback mechanism that can enhance the response of the high anomaly itself, which in turns reinforces the Rossby wave train propagating toward the South American continent.Fil: Solman, Silvina Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmosfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmosfera; ArgentinaFil: Orlanski, Isidoro. University of Princeton; Estados Unido

    Simulating the midlatitude atmospheric circulation: what might we gain from high-resolution modeling of air-sea interactions?

    Get PDF
    Purpose of Review. To provide a snapshot of the current research on the oceanic forcing of the atmospheric circulation in midlatitudes and a concise update on previous review papers. Recent findings. Atmospheric models used for seasonal and longer timescales predictions are starting to resolve motions so far only studied in conjunction with weather forecasts. These phenomena have horizontal scales of ~ 10–100 km which coincide with energetic scales in the ocean circulation. Evidence has been presented that, as a result of this matching of scale, oceanic forcing of the atmosphere was enhanced in models with 10–100 km grid size, especially at upper tropospheric levels. The robustness of these results and their underlying mechanisms are however unclear. Summary. Despite indications that higher resolution atmospheric models respond more strongly to sea surface temperature anomalies, their responses are still generally weaker than those estimated empirically from observations. Coarse atmospheric models (grid size greater than 100 km) will miss important signals arising from future changes in ocean circulation unless new parameterizations are developed

    On the breaking of standing internal gravity waves

    No full text

    Poleward shift and change of frontal activity in the Southern Hemisphere over the last 40 years

    Get PDF
    Several studies have documented the poleward shift of the midlatitude westerly jet of the Southern Hemisphere during the last decades of the twentieth century, mainly during the warm season. In this work the consistency between this change and the seasonal changes in frontal activity and precipitation are explored. The authors also attempt to identify the correlation between frontal activity and precipitation changes. Frontal activity is defined using the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) dataset for the period 1962?2001 as the temperature gradient times the relative vorticity at 850 hPa. Considering cyclonic systems only, an enhancement of the frontal activity at high latitudes in the last two decades is apparent. However, the pattern of frontal activity change is not zonally symmetric, with the zonal asymmetries consistent with the climate change signal of the zonal anomaly of the 300-hPa geopotential height. The pattern of precipitation change, showing midlatitude drying and high-latitude moistening, is consistent with the pattern of the frontal activity change, explaining to a large extent both the zonal mean and asymmetric rainfall changes. This consistency is also found in terms of the year-to-year variability of the zonal mean at both mid- and high latitudes. However, the frontal activity has a complex relationship with rainfall (not every frontal system is associated with rainfall events), and this consistency is unclear over some specific regions. Results presented here highlight the robust link between the change in the asymmetric component of the upper-level circulation, the frontal activity, and rainfall over the mid- to high latitudes of the Southern Hemisphere.Fil: Solman, Silvina Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera; ArgentinaFil: Orlanski, Isidoro. Princeton University. Atmospheric and Oceanic Sciences Program; Estados Unido

    Climate change over the extratropical southern hemisphere: the tale from an ensemble of reanalysis datasets

    Get PDF
    In this study, a set of five reanalysis datasets [ERA-Interim, NCEP–DOE AMIP-II reanalysis (R2), MERRA, the Twentieth Century Reanalysis (20CR), and the CFS Reanalysis (CFSR)] is used to provide a robust estimation of precipitation change in the middle-to-high latitudes of the Southern Hemisphere during the last three decades. Based on several metrics accounting for the eddy activity and moisture availability, an attempt is also made to identify the dynamical mechanisms triggering these changes during extended summer and winter seasons. To that aim, a weighted reanalysis ensemble is built using the inverse of the variance as weighting factors for each variable. Results showed that the weighted reanalysis ensemble reproduced the observed precipitation changes at high and middle latitudes during the two seasons, as depicted by the GPCP dataset. For the extended summer season, precipitation changes were dynamically consistent with changes in the eddy activity, attributed mostly to ozone depletion. For the extended winter season, the eddy activity and moisture availability both contributed to the precipitation changes, with the increased concentration of greenhouse gases being the main driver of the climate change signal. In addition, output from a five-member ensemble of the high-resolution GFDL CM2.5 for the period 1979– 2010 was used in order to explore the capability of the model in reproducing both the observed precipitation change and the underlying dynamical mechanisms. The model was able to capture the rainfall change signal. However, the increased availability of moisture from the lower levels controls the precipitation change during both summer and winter.Fil: Solman, Silvina Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmosfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmosfera; ArgentinaFil: Orlanski, Isidoro. University of Princeton; Estados Unido

    The Mutual Interaction between External Rossby Waves and Thermal Forcing: the Subpolar Regions

    Get PDF
    The authors hypothesize a simple feedback mechanism between external Rossby waves and diabatic heating from convection. This mechanism could explain the large amplitude that external Rossby waves attain as they propagate to mid- and high latitudes. A series of experiments has been carried out with a core dynamic global spectral model. These simulations with the idealized atmospheric GCM and a simple parameterization of thermal forcing proportional to the low-level wave meridional velocity suggest that external Rossby waves can be enhanced by convection, which they themselves induce. It is shown that in the tropospheric upper levels the amplitude of the external waves can be twice as large with feedback as for a control simulation that does not allow feedback.Fil: Orlanski, Isidoro. University of Princeton; Estados UnidosFil: Solman, Silvina Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmosfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmosfera; Argentin
    corecore