2,489 research outputs found

    Motion of the ablation cloud in torus plasmas

    Get PDF
    The motion of an ablation cloud is investigated in a tokamak by using ideal magnetohydrodynamic equations with ablation processes. The cloud quickly expands along the magnetic field and simultaneously drifts to the lower field side due to a tire tube force and 1/R force. It is found that the acceleration of the cloud increases and subsequently decreases due to the energy deposit from the bulk plasma and, finally, the cloud is stopped due to the poloidal field

    Two-dimensional simulation of pellet ablation with atomic processes

    Get PDF
    A two-dimensional hydrodynamic simulation code CAP has been developed in order to investigate the dynamics of hydrogenic pellet ablation in magnetized plasmas throughout their temporal evolution. One of the properties of the code is that it treats the solid-to-gas phase change at the pellet surface without imposing artificial boundary conditions there, as done in previous ablation models. The simulation includes multispecies atomic processes, mainly molecular dissociation and thermal ionization in the ablation flow beyond the pellet, with a kinetic heat flux model. It was found that ionization causes the formation of a quasistationary shock front in the supersonic region of the ablation flow, followed by a "second" sonic surface farther out. Anisotropic heating, due to the directionality of the magnetic field, contributes to a nonuniform ablation (recoil) pressure distribution over the pellet surface. Since the shear stress can exceed the yield strength of the solid for a sufficiently high heat flux, the solid pellet can be fluidized and flattened into a "pancake" shape while the pellet is ablating and losing mass. The effect of pellet deformation can shorten the pellet lifetime almost 3Ă— from that assuming the pellet remains rigid and stationary during ablation

    Spatial propagation of excitonic coherence enables ratcheted energy transfer

    Full text link
    Experimental evidence shows that a variety of photosynthetic systems can preserve quantum beats in the process of electronic energy transfer, even at room temperature. However, whether this quantum coherence arises in vivo and whether it has any biological function have remained unclear. Here we present a theoretical model that suggests that the creation and recreation of coherence under natural conditions is ubiquitous. Our model allows us to theoretically demonstrate a mechanism for a ratchet effect enabled by quantum coherence, in a design inspired by an energy transfer pathway in the Fenna-Matthews-Olson complex of the green sulfur bacteria. This suggests a possible biological role for coherent oscillations in spatially directing energy transfer. Our results emphasize the importance of analyzing long-range energy transfer in terms of transfer between inter-complex coupling (ICC) states rather than between site or exciton states.Comment: Accepted version for Phys. Rev. E. 14 pages, 7 figure

    Quantum entanglement in photosynthetic light harvesting complexes

    Full text link
    Light harvesting components of photosynthetic organisms are complex, coupled, many-body quantum systems, in which electronic coherence has recently been shown to survive for relatively long time scales despite the decohering effects of their environments. Within this context, we analyze entanglement in multi-chromophoric light harvesting complexes, and establish methods for quantification of entanglement by presenting necessary and sufficient conditions for entanglement and by deriving a measure of global entanglement. These methods are then applied to the Fenna-Matthews-Olson (FMO) protein to extract the initial state and temperature dependencies of entanglement. We show that while FMO in natural conditions largely contains bipartite entanglement between dimerized chromophores, a small amount of long-range and multipartite entanglement exists even at physiological temperatures. This constitutes the first rigorous quantification of entanglement in a biological system. Finally, we discuss the practical utilization of entanglement in densely packed molecular aggregates such as light harvesting complexes.Comment: 14 pages, 7 figures. Improved presentation, published versio

    The origin of correlation between mass and angle in quasi-fission

    Full text link
    Mass-angle distribution (MAD) measurement of heavy and superheavy element fragmentation reactions is one of the powerful tools for investigating the mechanism of fission and fusion process. MAD shows a strong correlation between mass and angle when the quasi-fission event is dominant. It has characteristic that appears diagonal correlation as long as the quasi-fission event is dominant. This diagonal correlation could not be reproduced in previous our model before the introduction of the parameters. In this study, we systematically evaluate the unknown model parameters contained in our model and clarify those model parameters to reproduce the diagonal correlation that appears in MAD. Using a dynamical model based on the fluctuation dissipation theorem that employs Langevin equations, we calculate MADs of two reaction systems 48^{48}Ti+186^{186}W and 34^{34}S+232^{232}Th which are dominated by quasi-fission. We were able to clarify the effects of unknown model parameters on the MAD. In addition, we identified the values of model parameters that can reproduce the correlation between mass and angle. As a result, it was found that the balance of tangential friction and moment of inertia values is important for the correlation between mass and angle.Comment: 5 pages, 2 figures, SND2020. arXiv admin note: text overlap with arXiv:2309.11095, arXiv:2310.02547, arXiv:2310.0721

    Molecular Response in One-Photon Absorption via Natural Thermal Light vs Pulsed Laser Excitation

    Full text link
    Photoinduced biological processes occur via one photon absorption in natural light, which is weak, CW and incoherent, but are often studied in the laboratory using pulsed coherent light. Here we compare the response of a molecule to these two very different sources within a quantized radiation field picture. The latter is shown to induce coherent time evolution in the molecule, whereas the former does not. As a result, the coherent time dependence observed in the laboratory experiments will not be relevant to the natural biological process. Emphasis is placed on resolving confusions regarding this issue that are shown to arise from aspects of quantum measurement and from a lack of appreciation of the proper description of the absorbed photon.Comment: Revised (now published) manuscript: Replaces ArXiv:1109.002

    Pattern scaling using ClimGen: monthly-resolution future climate scenarios including changes in the variability of precipitation

    Get PDF
    Development, testing and example applications of the pattern-scaling approach for generating future climate change projections are reported here, with a focus on a particular software application called “ClimGen”. A number of innovations have been implemented, including using exponential and logistic functions of global-mean temperature to represent changes in local precipitation and cloud cover, and interpolation from climate model grids to a finer grid while taking into account land-sea contrasts in the climate change patterns. Of particular significance is a new approach for incorporating changes in the inter-annual variability of monthly precipitation simulated by climate models. This is achieved by diagnosing simulated changes in the shape of the gamma distribution of monthly precipitation totals, applying the pattern-scaling approach to estimate changes in the shape parameter under a future scenario, and then perturbing sequences of observed precipitation anomalies so that their distribution changes according to the projected change in the shape parameter. The approach cannot represent changes to the structure of climate timeseries (e.g. changed autocorrelation or teleconnection patterns) were they to occur, but is shown here to be more successful at representing changes in low precipitation extremes than previous pattern-scaling methods
    • …
    corecore