779 research outputs found

    Collusions Between Patients and Clinicians in End-of-Life Care: Why Clarity Matters.

    Get PDF
    Collusion, an unconscious dynamic between patients and clinicians, may provoke strong emotions, unreflected behaviors, and a negative impact on care. Collusions, prevalent in the health care setting, are triggered by situations which signify an unresolved psychological issue relevant for both, patient and clinician. After an introductory definition of collusion, two archetypal situations of collusion-based on material from a regular supervision of a palliative care specialist by a liaison psychiatrist-and means of working through collusion are presented. The theoretical framework of collusion is then described and the conceptual shortcomings of the palliative care literature in this respect discussed, justifying the call for more clarity. Finally, cultural aspects and societal injunctions on the dying, contributing to the development of collusion in end-of-life care, are discussed

    Ovarian Development of Female-Female Pairs in the Termite, Reticulitermes speratus

    Get PDF
    In the rhinotermitid termite Reticulitermes speratus (Kolbe) (Isoptera: Rhinotermitidae), facultative parthenogenesis is known to occur occasionally and females cooperate with other females to found the colony. To elucidate the ovarian development in these two females, incipient female-female colonies were established under laboratory conditions, and the process of colony development was observed at 0.5, 1.5, 2.5, 3.5, and 7.5 months (stages I–V, respectively) after colony foundation. Ovarian development, vitellogenin gene expression, and juvenile hormone (JH) titers were examined. A precise reproductive cycle in both females was observed, in which the oviposition rate was relatively higher during stages I and II, decreased during stages III and IV, and then increased again at stage V. JH III titer and vitellogenin gene expression changed in parallel throughout the reproductive cycle of these queens. Ovarian maturation and vitellogenesis were similar in both females in a female-female colony at all stages examined, suggesting that no conflicts existed for two females in terms of oviposition

    Theoretical and Numerical Analysis of an Optimal Execution Problem with Uncertain Market Impact

    Get PDF
    This paper is a continuation of Ishitani and Kato (2015), in which we derived a continuous-time value function corresponding to an optimal execution problem with uncertain market impact as the limit of a discrete-time value function. Here, we investigate some properties of the derived value function. In particular, we show that the function is continuous and has the semigroup property, which is strongly related to the Hamilton-Jacobi-Bellman quasi-variational inequality. Moreover, we show that noise in market impact causes risk-neutral assessment to underestimate the impact cost. We also study typical examples under a log-linear/quadratic market impact function with Gamma-distributed noise.Comment: 24 pages, 14 figures. Continuation of the paper arXiv:1301.648

    Photochemical Processes in a Rhenium(I) Tricarbonyl N-Heterocyclic Carbene Complex Studied by Time-Resolved Measurements

    Get PDF
    We carried out time-resolved infrared (TR-IR) and emission lifetime measurements on a Re(I) carbonyl complex having an N-heterocyclic carbene ligand, namely, fac-[Re(CO)3(PyImPh)Br], under photochemically reactive (in solution in acetonitrile) and nonreactive (in solution in dichloromethane) conditions to investigate the mechanism of photochemical ligand substitution reactions. The TR-IR measurements revealed that no reaction occurs on a picosecond time scale and the cationic product, namely, fac-[Re(CO)3(PyImPh)(MeCN)](+), is produced on a nanosecond time scale only in solution in acetonitrile, which indicates that the reaction proceeds thermally from the excited state. Because no other products were observed by TR-IR, we concluded that this cationic product is an intermediate species for further reactions. The measurements of the temperature-dependent emission lifetime and analysis using transition-state theory revealed that the photochemical substitution reaction proceeds from a metal-to-ligand charge transfer excited state, the structure of which allows the potential coordination of a solvent molecule. Thus, the coordinating capacity of the solvent determines whether the reaction proceeds or not. This mechanism is different from those of photochemical reactions of other types of Re(I) carbonyl complexes owing to the unique characteristics of the carbene ligand

    Nitrogen Management in Grasslands and Forage-Based Production Systems–Role of Biological Nitrification Inhibition (BNI)

    Get PDF
    Nitrogen (N), being the most critical and essential nutrient for plant growth, largely determines the productivity in both extensive- and intensive- grassland systems. Nitrification and denitrification processes in the soil are the primary drivers generating reactive-N: NO3-, N2O, and NO, and is largely responsible for N-loss and degradation of grasslands. Suppressing nitrification can thus facilitate the retention of soil-N to sustain long-term productivity of grasslands and forage-based production systems. Certain plants can suppress soil nitrification by releasing inhibitors from roots, a phenomenon termed ‘biological nitrification inhibition’ (BNI). Recent methodological developments (e.g. bioluminescence assay to detect BNIs from plant-root systems) led to significant advances in our ability to quantify and characterize BNI function in pasture grasses. Among grass-pastures, BNI-capacity is strongest in low-N adapted grasses such as Brachiaria humidicola and weakest in high-N environment grasses such as Italian ryegrass (Lolium perenne) and B. brizantha. The chemical identity of some of the BNIs produced in plant tissues and released from roots has now been established and their mode of inhibitory action determined on nitrifying bacteria Nitrosomonas. Synthesis and release of BNIs is a highly regulated and localized process, triggered by the presence of NH4+ in the rhizosphere, which facilitates the release of BNIs close to soil-nitrifier sites. Substantial genotypic variation is found for BNI-capacity in B. humidicola, which opens the way for its geneticmanipulation. Field studies suggest that Brachiaria grasses suppress nitrification and N2O emissions from soil. The potential for exploiting BNI function (from a genetic improvement and a system perspective) to develop production systems that are low-nitrifying, low N2O-emitting, economically efficient and ecologically sustainable, will be the subject of discussion

    Cryo-EM structure of the volume-regulated anion channel LRRC8D isoform identifies features important for substrate permeation

    Get PDF
    Members of the leucine-rich repeat-containing 8 (LRRC8) protein family, composed of the five LRRC8A-E isoforms, are pore-forming components of the volume-regulated anion channel (VRAC). LRRC8A and at least one of the other LRRC8 isoforms assemble into heteromers to generate VRAC transport activities. Despite the availability of the LRRC8A structures, the structural basis of how LRRC8 isoforms other than LRRC8A contribute to the functional diversity of VRAC has remained elusive. Here, we present the structure of the human LRRC8D isoform, which enables the permeation of organic substrates through VRAC. The LRRC8D homo-hexamer structure displays a two-fold symmetric arrangement, and together with a structure-based electrophysiological analysis, revealed two key features. The pore constriction on the extracellular side is wider than that in the LRRC8A structures, which may explain the increased permeability of organic substrates. Furthermore, an N-terminal helix protrudes into the pore from the intracellular side and may be critical for gating

    Impact of Virologic Breakthrough and HBIG Regimen on Hepatitis B Recurrence After Liver Transplantation

    Full text link
    The availability of hepatitis B immune globulin (HBIG) and several oral antiviral therapies has reduced but not eliminated hepatitis B virus (HBV) recurrence. We aimed to determine the rate of HBV recurrence after orthotopic liver transplantation (OLT) in relation to virologic breakthrough pre-OLT and HBIG regimens post-OLT. Data from the NIH HBV-OLT database were analyzed. A total of 183 patients transplanted between 2001 and 2007 followed for a median of 42 months (range 1–81) post-OLT were studied. At transplant, 29% were hepatitis B e antigen (HBeAg) (+), 38.5% had HBV DNA > 5 log 10 copies/mL, 74% were receiving antiviral therapy. Twenty-five patients experienced virologic breakthrough before OLT. Post-OLT, 26%, 22%, 40% and 12% of patients received intravenous (IV) high-dose, IV low-dose, intramuscular low-dose and a finite duration of HBIG, respectively as maintenance prophylaxis. All but two patients also received antiviral therapy. Cumulative rates of HBV recurrence at 1 and 5 years were 3% and 9%, respectively. Multivariate analysis showed that listing HBeAg status and HBV DNA level at OLT were the only factors associated with HBV recurrence. In conclusion, low rates of HBV recurrence can be accomplished with all the HBIG regimens used when combined with antiviral therapy including patients with breakthrough pre-OLT as long as rescue therapy is administered pre- and post-OLT.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/79358/1/j.1600-6143.2010.03046.x.pd
    corecore