1,084 research outputs found

    Swelling of acetylated wood in organic liquids

    Full text link
    To investigate the affinity of acetylated wood for organic liquids, Yezo spruce wood specimens were acetylated with acetic anhydride, and their swelling in various liquids were compared to those of untreated specimens. The acetylated wood was rapidly and remarkably swollen in aprotic organic liquids such as benzene and toluene in which the untreated wood was swollen only slightly and/or very slowly. On the other hand, the swelling of wood in water, ethylene glycol and alcohols remained unchanged or decreased by the acetylation. Consequently the maximum volume of wood swollen in organic liquids was always larger than that in water. The effect of acetylation on the maximum swollen volume of wood was greater in liquids having smaller solubility parameters. The easier penetration of aprotic organic liquids into the acetylated wood was considered to be due to the scission of hydrogen bonds among the amorphous wood constituents by the substitution of hydroxyl groups with hydrophobic acetyl groups.Comment: to be published in J Wood Science (Japanese wood research society

    Electromagnetic effects of neutrinos in an electron gas

    Full text link
    We study the electromagnetic properties of a system that consists of an electron background and a neutrino gas that may be moving or at rest, as a whole, relative to the background. The photon self-energy for this system is characterized by the usual transverse and longitudinal polarization functions, and two additional ones which are the focus of our calculations, that give rise to birefringence and anisotropic effects in the photon dispersion relations. Expressions for them are obtained, which depend on the neutrino number densities and involve momentum integrals over the electron distribution functions, and are valid for any value of the photon momentum and general conditions of the electron gas. Those expressions are evaluated explicitly for several special cases and approximations which are generally useful in astrophysical and cosmological settings. Besides studying the photon dispersion relations, we consider the macroscopic electrodynamic equations for this system, which involve the standard dielectric and permeability constants plus two additional ones related to the photon self-energy functions. As an illustration, the equations are used to discuss the evolution of a magnetic field perturbation in such a medium. This particular phenomena has also been considered in a recent work by Semikoz and Sokoloff as a mechanism for the generation of large-scale magnetic fields in the Early Universe as a consequence of the neutrino-plasma interactions, and allows us to establish contact with a specific application in a well defined context, with a broader scope and from a very different point of view.Comment: Revtex 20 page

    Metallicity Gradients in the Intracluster Gas of Abell 496

    Full text link
    Analysis of spatially resolved ASCA spectra of the intracluster gas in Abell 496 confirms there are mild metal abundance enhancements near the center, as previously found by White et al. (1994) in a joint analysis of Ginga LAC and Einstein SSS spectra. Simultaneous analysis of spectra from all ASCA instruments (SIS + GIS) shows that the iron abundance is 0.36 +- 0.03 solar 3-12' from the center of the cluster and rises ~50% to 0.53 +- 0.04 solar within the central 2'. The F-test shows that this abundance gradient is significant at the >99.99% level. Nickel and sulfur abundances are also centrally enhanced. We use a variety of elemental abundance ratios to assess the relative contribution of SN Ia and SN II to the metal enrichment of the intracluster gas. We find spatial gradients in several abundance ratios, indicating that the fraction of iron from SN Ia increases toward the cluster center, with SN Ia accounting for ~50% of the iron mass 3-12' from the center and ~70% within 2'. The increased proportion of SN Ia ejecta at the center is such that the central iron abundance enhancement can be attributed wholly to SN Ia; we find no significant gradient in SN II ejecta. These spatial gradients in the proportion of SN Ia/II ejecta imply that the dominant metal enrichment mechanism near the center is different than in the outer parts of the cluster. We show that the central abundance enhancement is unlikely to be due to ram pressure stripping of gas from cluster galaxies, or to secularly accumulated stellar mass loss within the central cD. We suggest that the additional SN Ia ejecta near the center is the vestige of a secondary SN Ia-driven wind from the cD (following a more energetic protogalactic SN II-driven wind phase), which was partially smothered in the cD due to its location at the cluster center.Comment: 25 pages AASTeX; 6 encapsulated PostScript figures; accepted for publication in ApJ. Replaced with revised versio

    Anisotropic multiple scattering in diffuse media

    Get PDF
    The multiple scattering of scalar waves in diffusive media is investigated by means of the radiative transfer equation. This approach amounts to a resummation of the ladder diagrams of the Born series; it does not rely on the diffusion approximation. Quantitative predictions are obtained, concerning various observables pertaining to optically thick slabs, such as the mean angle-resolved reflected and transmitted intensities, and the shape of the enhanced backscattering cone. Special emphasis is put on the dependence of these quantities on the anisotropy of the cross-section of the individual scatterers, and on the internal reflections due to the optical index mismatch at the boundaries of the sample. The regime of very anisotropic scattering, where the transport mean free path \ell^* is much larger than the scattering mean free path \ell, is studied in full detail. For the first time the relevant Schwarzschild-Milne equation is solved exactly in the absence of internal reflections, and asymptotically in the regime of a large index mismatch. An unexpected outcome concerns the angular width of the enhanced backscattering cone, which is predicted to scale as Δθλ/\Delta\theta\sim\lambda/\sqrt{\ell\ell^*}, in contrast with the generally accepted λ/\lambda/\ell^* law, derived within the diffusion approximation.Comment: 53 pages TEX, including 2 tables. The 4 figures are sent at reques

    Explosive nucleosynthesis in core-collapse supernovae

    Full text link
    The specific mechanism and astrophysical site for the production of half of the elements heavier than iron via rapid neutron capture (r-process) remains to be found. In order to reproduce the abundances of the solar system and of the old halo stars, at least two components are required: the heavy r-process nuclei (A>130) and the weak r-process which correspond to the lighter heavy nuclei (A<130). In this work, we present nucleosynthesis studies based on trajectories of hydrodynamical simulations for core-collapse supernovae and their subsequent neutrino-driven winds. We show that the weak r-process elements can be produced in neutrino-driven winds and we relate their abundances to the neutrino emission from the nascent neutron star. Based on the latest hydrodynamical simulations, heavy r-process elements cannot be synthesized in the neutrino-driven winds. However, by artificially increasing the wind entropy, elements up to A=195 can be made. In this way one can mimic the general behavior of an ejecta where the r-process occurs. We use this to study the impact of the nuclear physics input (nuclear masses, neutron capture cross sections, and beta-delayed neutron emission) and of the long-time dynamical evolution on the final abundances.Comment: 10 pages, 8 figures, invited talk, INPC 2010 Vancouver, Journal of Physics: Conference Serie

    Role of Anisotropy and Refractive Index in Scattering and Whiteness Optimization

    Get PDF
    The ability to manipulate light-matter interaction to tailor the scattering properties of materials is crucial to many aspects of our everyday life, from paints to lighting, and to many fundamental concepts in disordered photonics. Light transport and scattering in a granular disordered medium are dictated by the spatial distribution (structure factor) and the scattering properties (form factor and refractive index) of its building blocks. As yet, however, the importance of anisotropy in such systems has not been considered. Here, we report a systematic numerical survey that disentangles and quanti es the role of different kinds and degrees of anisotropy in scattering optimization. We show that ensembles of uncorrelated, anisotropic particles with nematic ordering enables to increase by 20% the reflectance of low-refractive index media (n = 1.55), using only three-quarters of material compared to their isotropic counterpart. Additionally, these systems exhibit a whiteness comparable to conventionally used high-refractive index media, e.g. TiO2 (n = 2:60). Therefore, our findings not only provide an understanding of the role of anisotropy in scattering optimization, but they also showcase a novel strategy to replace inorganic white enhancers with sustainable and bio-compatible products made of biopolymers

    Intermediate Element Abundances in Galaxy Clusters

    Full text link
    We present the average abundances of the intermediate elements obtained by performing a stacked analysis of all the galaxy clusters in the archive of the X-ray telescope ASCA. We determine the abundances of Fe, Si, S, and Ni as a function of cluster temperature (mass) from 1--10 keV, and place strong upper limits on the abundances of Ca and Ar. In general, Si and Ni are overabundant with respect to Fe, while Ar and Ca are very underabundant. The discrepancy between the abundances of Si, S, Ar, and Ca indicate that the alpha-elements do not behave homogeneously as a single group. We show that the abundances of the most well-determined elements Fe, Si, and S in conjunction with recent theoretical supernovae yields do not give a consistent solution for the fraction of material produced by Type Ia and Type II supernovae at any temperature or mass. The general trend is for higher temperature clusters to have more of their metals produced in Type II supernovae than in Type Ias. The inconsistency of our results with abundances in the Milky Way indicate that spiral galaxies are not the dominant metal contributors to the intracluster medium (ICM). The pattern of elemental abundances requires an additional source of metals beyond standard SNIa and SNII enrichment. The properties of this new source are well matched to those of Type II supernovae with very massive, metal-poor progenitor stars. These results are consistent with a significant fraction of the ICM metals produced by an early generation of population III stars.Comment: 18 pages, 11 figures, 7 tables. Submitted to Ap

    Recent X-ray Observations and the Evolution of Hot Gas in Elliptical Galaxies: Evidence for Circumgalactic Gas

    Get PDF
    X-ray emitting gaseous halos, such as that in elliptical galaxies like NGC 4472, cannot have been produced solely from gas expelled from galactic stars. In traditional models for the evolution of hot interstellar gas (cooling flows) in ellipticals, the galaxies are assumed to have been cleared of gas by SNII-driven winds at some early time then gas is subsequently replenished by mass loss from an evolving population of old stars. To test this, we accurately determine the stellar and dark halo mass of NGC 4472 using hydrostatic equilibrium, then solve the standard time-dependent cooling flow equations to recover the observed hot gas temperature and density distributions when evolved to the present time. This procedure fails: the computed gas density gradient is too steep, the total gas mass is too low, and the gas temperatures are much too low. All variants on this basic procedure also fail: increasing the SNIa rate, using the mass dropout assumption, arbitrarily adjusting uncertain coefficients, etc. However, agreement is achieved if the galaxy is supplied with additional, spatially-extended hot gas early in its evolution. This old ``circumgalactic'' gas can be retained to the present time and may be related to cosmological ``secondary infall''.Comment: 15 pages in two-column AASTEX LaTeX including 1 table and 8 figures; abstract corrected in replacement; accepted by Astrophysical Journa

    Homodyne detection for atmosphere channels

    Full text link
    We give a systematic theoretical description of homodyne detection in the case where both the signal and the local oscillator pass through the turbulent atmosphere. Imperfect knowledge of the local-oscillator amplitude is effectively included in a noisy density operator, leading to postprocessing noise. Alternatively, we propose a technique with monitored transmission coefficient of the atmosphere, which is free of postprocessing noise.Comment: 9 pages, 5 figure

    Characterizing the role of rice NRAMP5 in Manganese, Iron and Cadmium Transport

    Get PDF
    Metals like manganese (Mn) and iron (Fe) are essential for metabolism, while cadmium (Cd) is toxic for virtually all living organisms. Understanding the transport of these metals is important for breeding better crops. We have identified that OsNRAMP5 contributes to Mn, Fe and Cd transport in rice. OsNRAMP5 expression was restricted to roots epidermis, exodermis, and outer layers of the cortex as well as in tissues around the xylem. OsNRAMP5 localized to the plasma membrane, and complemented the growth of yeast strains defective in Mn, Fe, and Cd transport. OsNRAMP5 RNAi (OsNRAMP5i) plants accumulated less Mn in the roots, and less Mn and Fe in shoots, and xylem sap. The suppression of OsNRAMP5 promoted Cd translocation to shoots, highlighting the importance of this gene for Cd phytoremediation. These data reveal that OsNRAMP5 contributes to Mn, Cd, and Fe transport in rice and is important for plant growth and development
    corecore