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Abstract. The multiple scattering of scalar waves in diffusive media is investigated by means
of the radiative transfer equation. This approach, which does not rely on the diffusion
approximation, becomes asymptotically exact in the regime of most interest, where the scattering
mean free patli is much larger than the wavelength. Quantitative predictions are derived in

that regime, concerning various observables pertaining to optically thick slabs, such as the mean
angle-resolved reflected and transmitted intensities, and the width of the enhanced backscattering
cone. Special emphasis is put on the dependence of these guantities on the anisotropy of the
cross section of the individual scatterers, and on the internal reflections due to the optical
index mismatch at the boundaries of the sample. The large index mismatch regime is studied
analytically, for arbitrary anisotropic scattering. The regime of very anisotropic scattering,
where the transport mean free pathis much larger than the scattering mean free gatls

then investigated in detail. The relevant Schwarzschild-Milne equation is solved exactly in the
absence of internal reflections.

1. Introduction

The theory of multiple light scattering has been a classical subject of interest for one century,
which attracted the attention of many scientists, including Lord Rayleigh, Schwarzschild
and Chandrasekhar. Standard books are available, such as those by Chandrasekhar [1],
Ishimaru [2], van de Hulst [3] and Sobolev [4]. The discovery of weak-localization effects,
and chiefly the enhanced backscattering cone [5], yielded a revival of theoretical and
experimental work in the area of multiple scattering in disordered media. Much progress
has been done recently in the analysis of speckle fluctuations [6], in analogy with the
conductance fluctuations observed in mesoscopic electronic systems [7].

Laboratory experiments are often performed either on soli¢g T¥hite paint) samples,
or on suspensions of polystyrene spheres or of, Tg€ains in fluids. In most cases, the
wavelengthio of light in the diffusive medium, the scattering mean free pgttand the
thicknessL of the sample obey the inequalities « ¢ <« L. Multiple scattering is also of
interest in biophysics and medical physics, in order to understand the transport of radiation
through human and animal tissues. Besides light, all kinds of classical waves undergo
multiple scattering in media with a high enough level of disorder, i.e. of inhomogeneity.
Well known examples are acoustic and seismic waves. The propagation of electrons in
disordered solids also pertains to this area, since quantum mechanics also basically consists
in wave propagation.
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Multiple scattering of waves in disordered media admits the following three levels of
theoretical description.

(i) The macroscopicapproach consists in an effective diffusion equation, which describes
the transport of the diffuse (incoherent) intensityr, r) at point» at timez. This
approximation turns out to be very accurate in the bulk of a turbid medium, and
more generally on length scales much larger than the mean free/ pdthe diffusion
approximation yields several interesting predictions, among which we mention the 1
decay of the total transmission through an optically thick slab of thickhess ¢, the
decay time of the transient response to an incident light pulse, or the memory of a typical
speckle pattern when the frequency of light is varied. This approximation also allows
for a quantitative prediction of the diffuse image of a small object in transmission [8].

(i) The mesoscopi@approach, used by astrophysicists throughout the classical era of the
subject, is referred to as radiative transfer theory [1-4]. This theory relies on the radiative
transfer equation, which is a local balance equation, similar to the Boltzmann equation
in kinetic theory, for the diffuse intensity (r, n, t), with n being the direction of
propagation. This approach leads in a natural way to distinguish between the scattering
mean free patli and the transport mean free pdth to be defined below. The diffusion
approach (i) is recovered in the limit of length scales much larger £han

(iii) The microscopicapproach consists in expanding the solution of the wave equation
in the disordered medium in the form of a diagrammatic Born series. In the regime
£ > Ao the leading diagrams can be identified, in analogy with, for example, the theory
of disordered superconductors [9]. For the diffuse intensity they are the ladder diagrams,
which are built up by pairing one retarded and one advanced propagator following the
same path through the disordered sample, i.e. the same ordered sequence of scattering
events. This picture agrees with that behind the radiative transfer equation, which is
a classical transport equation for the intensity. The ladder diagrams can be summed
and yield an integral equation of the Bethe—Salpeter type for the diffuse intensity,
which we refer to as the Schwarzschild—Milne equation. The radiative transfer approach
(i) is thus recovered in the weak-disordér > Ag) regime. A further step consists
in including some of the subleading diagrams, of relative omdgit <« 1, which
account for interference effects between diffusive paths. Among those contributions,
the class of maximally crossed diagrams is of particular interest, since it describes the
aforementioned enhanced backscattering phenomenon [10, 11].

To summarize this discussion, each of the descriptions mentioned above represents a
gualitative improvement with respect to the previous ones (see e.g. [12]). In order to derive
guantitative estimates of observables in the regine Ag of interest, it is sufficient to
consider radiative transfer theory. The macroscopic approach (i) is clearly insufficient,
since we aim, among other things, at a description of the crossover from free propagation
to diffusive transport which takes place in thkin layersof thickness of orde¥, near the
boundaries of the disordered medium. This phenomenon is, by its very definition, beyond
the scope of the diffusion approach. The radiative transfer approach (ii) leads us to study the
Schwarzschild—Milne equation (2.26), (2.28). This equation has only been solved exactly in
a limited number of cases. Analytical results have been obtained for isotropic scattering of
scalar waves [1, 13-15], and in the case where the scattering cross section depends linearly
on the cosine of the scattering angle [1, 16]. The case of anisotropic scattering has essentially
been investigated by means of general formalism and by numerical methods [2, 3, 17].

For a finite sample, physical observables such as the reflected or transmitted intensity in a
given direction depend on the particular realization of the sample under consideration. Such
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guantities are indeed the results of intricate interference patterns throughout the sample; they
only become self-averaging quantities in the limit of a large enough sample. This definition
can be made precise by means of the dimensionless condugtancé/¢/L, related to

the number\' ~ A/1% of open channels, wherd is the transverse area of the sample.
The self-averaging regime correspondssts> 1. The whole distribution of observables is
therefore of interest, as long gsis not very large. We mention a recent experiment [18],
where the third cumulant of the total transmission, an effect of relative ordet, has

been measured and compared to theoretical predictions. This third cumulant is of the same
order of magnitude as the universal conductance fluctuations, either in electronic [7] or in
optical [6] systems. In fact the full distribution of the total transmission through an optically
thick slab has been derived recently [19]. In the following we focus our attention on the
mean values of physical quantities.

The vector character of electromagnetic waves also introduces its own intricacy. In
general four coupled integral equations have to be solved, which are associated with the
Stokes parameters of the diffuse light in the medium. These equations have been solved
exactly in the case of Rayleigh scattering, i.e. the regime where the size of the scatterers is
much smaller than the wavelength [1, 20]. Among specific features pertaining to diffusive
light propagation, let us mention the dependence of the backscattering enhancement factor on
the polarization states of the incoming and outgoing radiation [21-23], or the progressive
destruction of the backscattering peak induced by a magnetic field, due to the Faraday
rotation in a magneto-optically active material [24-27].

Furthermore, in practical situations the optical indgof the scattering medium is often
different from the index:; of the surrounding medium. This index mismatch, measured
by the ratiom = ng/ny, causes reflections at the interfaces. In the regime of a large index
mismatch 2 < 1 or m > 1), the transmission across the interfaces is very small, so
that the light is reinjected many times in the diffusive medium. As a consequence, the
skin layers become very thick in this regime. More generally, the diffusion approximation
works better and better as the index mismatch gets large. Improvements of the diffusion
equation have been proposed [28, 29], which take internal reflections into account. It is
in fact possible to derive analytical expressions for the reflected and transmitted intensities
and other observables in this regime. This asymptotic analysis has been performed in [15]
for isotropic scattering. It will be generalized hereafter to the case of general anisotropic
scattering. This approach provides accurate results, even for a moderate index mismatch

More generally, one of the main goals of this paper is to quantify the dependence
of quantities on the anisotropy of the scattering mechanism. It has long been known from
radiative transfer theory that two length scales are involved in the case of general anisotropic
scattering: the scattering mean free péthnamely the effective distance between two
successive scattering events, and the transport mean freé*pathmely the distance over
which radiation loses memory of its direction. Both mean free paths, to be defined more
precisely in section 2, depend on details of the scattering mechanism, such as the shape,
size and dielectric constant of the scatterers. In the regime of very anisotropic scattering,
we have?* > ¢. The ratiot* = £*/¢ > 1 will be referred to as thanisotropy parameter
In some experimental situation$ can be of order ten or larger [30]. The regime of most
interest is thery <« ¢ K€ £* < L.

The setup of this paper is as follows. In section 2 we present some general formalism
on radiative transfer theory and we derive the associated Schwarzschild—-Milne equation.
We show how solutions of the latter equation yield predictions for quantities of interest,
such as the diffuse reflected and transmitted angle-resolved intensities. The determination
of the shape of the enhanced backscattering cone is also addressed. Section 3 is devoted to



4918 E Amic et al

the regime of a large index mismatch, for general anisotropy. In section 4 we derive
a complete analytical solution of the radiative transfer problem in the regime of very
anisotropic scatteringz* > 1), in the absence of internal reflections. The paper closes

up with a discussion in section 5.

2. Generalities on anisotropic multiple scattering

Throughout the following we restrict the analysis to multiple scattering of scalar waves by
scatterers located at uncorrelated random positions, in the regime where the scattering mean
free path¢ is much larger than the wavelengily of radiation in the medium. We have
summarized some useful notations and definitions in table 1.

Table 1. Conventions and notations for kinematic and other useful quantities.

Outside medium Inside medium
Optical index ni ng = mny
Wavenumber k1 =niw/c =21/ ko = now/c = mky = 21 /1o
Incidence angle 0 0’
p = k1 c0so P = kg cost’
Parallel wavevector
=koVu? — 1+ 1/m? = ko
Total reflection m <1 and si > m m > 1and s’ > 1/m
condition (i.e.P imaginary) (i.e.p imaginary)
Transverse Igl = g = k1Sing = kosing’ = kov'1 — 2
wavevector
Azimuthal angle 1)
R <P —p>2_ (M—«/;/.z—l+1/m2)2
Reflection partial P+p A Vp?—1+1/m?
and reflection . 4Pp  du /—Hz “ 1+ 1/m?
trans_m_lssmn (P + p)? (n+ V2 — 1+ 1/m?)?
coefficients
total |R=1
reflection” | 7 =0

As stated in section 1, we put special emphasis on the dependence of physical quantities
on the anisotropy of the scattering mechanism. After averaging over the random orientations
of the individual scatterers, the differential scattering cross section of arbitrary anisotropic
scatterers can be written in the following form [1, 2]

do(n,n') = (u/47)%p(©) d2. (2.1)

In this formulau is the scattering lengthp and n’ are unit vectors in the incident and
outgoing directions® is the angle between these directions, so thatecesn - n/, and

dQ’ is an element of solid angle around the directioh We assume that there is neither
absorption nor inelastic scattering. In other words the albedo is unity (the situation of non-
conservative scattering will only be considered in section 2.7). The phase funagin
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then obeys the normalization condition

dg’ 1 dcos®
/717(@) = / p(©) =1 (2.2)
4 _1 2
The total cross section reads= u?/(4r), and thescattering mean free pathis given by
1 4
(=~ — lz (2.3)
no nu

where the density of scatterers is assumed to be small, in such a way that wethave,.

In the particular case of isotropic scattering, the phase fungti@) = 1 is a constant.
In the general case of anisotropic scattering, the phase funet®nis a non-trivial function
of the scattering angle. As recalled in section 1, one has to distinguish between the scattering
mean free patld, which is the typical distance between two successive scattering events, and
the transport mean free patli*, which represents the distance over which radiation loses
memory of its direction. Both mean free paths are related by the following expression, well
known from kinetic theory,

* 1
e = 2.4
C T T 1= (cos®) (2.4)
with
1
{cosO) = / dCZSG) cos® p(@®). (2.5)
-1

The dimensionless ratio* will be referred to as thanisotropy parameter We usually
havet* > 1, i.e. £* > ¢, since the scattering cross section is often peaked in the forward
direction, in a more or less prominent way. The regimevefy anisotropic scattering
where p(@®) is strongly peaked around the forward direction, corresponds t» ¢. This
regime will be investigated in detail in section 4.

2.1. General formalism

In this section we present some general formalism on anisotropic multiple scattering, thus
extending the treatment of the isotropic case presented in [15]. Some of the results exposed
below are already present in lecture notes by one of us [12].

We begin with a reminder of radiative transfer theory. In the regime Ao under
consideration, in the absence of internal sources of radiation, and in stationary conditions, the
guantity of interest is the specific intensityr, n) of radiation at the position, propagating
in the directionn. The specific intensity obeys the time-independent radiative transfer
equation, that takes the following local form

n-Vi(r,n)=Twr,n)—I(r,n). (2.6)
The quantity

de’
I'(r,n) = / e p(n,n)I(r,n) 2.7)

is commonly referred to as the source function. We recall that the phase function
p(n,n') = p(®) only depends on the scattering angle

As recalled in section 1, the radiative transfer equation (2.6) [1-4] can be considered as a
mesoscopic balance equation for the light intensity inside the diffusive medium, somewhat
analogous to the Boltzmann equation in the kinetic theory of gases. It is equivalent to
the Bethe—Salpeter equation, obtained by summing the ladder diagrams of the Born series
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expansion of the intensity Green’s function of the problem. These diagrams are the dominant
ones for¢ > ), i.e. to leading order in the densityof scatterers.

We consider a sample of diffusive medium in the form of a slab of thickihesisnited
by the two parallel planes = 0 andz = L. The mean optical indexq of the slab can
be different from the index of the surrounding medium. The index mismatch, measured
by the ratiom = no/n1, generates internal reflections at the interfaces. We introduce the
optical deptht = z/¢ of a point in the sample, and the optical thicknéss: L/¢ of the
sample. Finally we use angular coordinates as in tabk i&:the incidence angle, with the
notationu = cosd, while the azimuthal angle is denoted by

Since the problem has rotational symmetry with respect tozthgis, normal to the
sample, and translational symmetry in tle, y)-plane, it is natural to express the
dependence of the specific intensity and of the source function as Fourier series of the
form
I(r.m)= Y I™(r, e Pr.m)= Y T™(r,pem (2.8)

—oo<m<—+o0 —oo<m<+00

where the integem is the azimuthal number.

Furthermore, along the lines of [1, 4], for general anisotropic conservative scattering,
we expand the phase function in Legendre polynomials as

p(®) = (2L + 1)z, Py(COSO). (2.9)
>0

We havewy = 1 (see below), while the other coefficients are only constrained by the
positivity of the phase function.
In coordinates related to the sample, the phase function then reads

p.n) = plu.o. i o)=Y pulp, p)e" ) (2.10)

—00<m<+00
with

/ (£ — |m|)! )
m (L, = 20+ 1 —— P Py . 2.11
Pty 1) @Zw( Dyt P () Pen () (2.11)

The radiative transfer equation (2.6) thus reduces to
ud—‘iﬂ"’)(r, w) =T (z, ) = 1" (, p) (2.12)
or equivalently
“d%“(m)(” e =Tz, welt (2.13)

and the source functiori3” (r, 1) are related to the specific intensiti#€” (r, 1) through
T (z, p) = D™ (x, w)] (2.14)

where we have introduced the integral operators

1 du’
D[ ()] = / l%pm(u,u’)cb(u/). (2.15)

We mention for further reference that the Legendre functigfs, (1), £ > |m|} form
a complete set of orthogonal eigenfunctions of the integral opeRi{tor with eigenvalues
wy, i.e.

D[Py ()] = @ Pew (). (2.16)
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Especially form = 0 we haveP, o(u) = P;(n), where the Legendre polynomial% (i)
already appeared in (2.9).
The following Legendre functions will be of special interest hereafter:

Poo() = Po(u) =1 Pro(w) = Pi(w) =p  Pra(w) =vV1—p? (2.17)
Indeed the identity (2.16) has the following two special cases of interest.

e The eigenvaluewy, = 1, associated with the constant eigenfunctigg(u) = 1 of
DO is a consequence of the conservative nature of the scattering mechanism, yielding
diffusive behaviour in the long-distance limit. More explicitly,

ld/ )
/ 5 Polit. i) = 1. (2.18)
~1

e The first non-trivial eigenvaluer; of both operatorsD© and DY is related to the
anisotropy parameter* of equation (2.4). Indeed, sind® (1) = u we have

1 du’
i o
f 5 Poli, ) = m1p (2.19)
-1
hence
1 1
w1 = (C0sS@) =1— — = . (2.20)
T* 1—-o

We also notice that all the eigenvalues of the operafdt8 are trivial in the particular
case of isotropic scattering, sineg = 1, while w, = 0 for £ > 1.

2.2. Schwarzschild—Milne equation

We now turn to the derivation of the Schwarzschild—Milne equation in the general situation
of anisotropic scattering. This key equation of radiative transfer theory will be the starting
point of the following developments.

It turns out that most observables of interest can be derived by considering quantities
with cylindrical symmetry around the-axis, namely those corresponding to an azimuthal
numberm = 0. Henceforth we restrict the analysis to this sector, except in section 2.6, and
we drop the superscript (0) for simplicity.

We consider first a half-space geometty= co). We assume that the limiting plane
7 = 0 of the sample is subjected to a cylindrically symmetric incident beam, characterized
by an angle of incidenc#,, i.e. that the incident intensity does not depend on the
azimuthal anglep,. This is automatically satisfied at normal inciden@g = 0). Under
these circumstances, the inward intensity on the limiting ptare 0™ contains both the
normalized refracted incident beam, coming in a direction defined hyand the intensity
coming from the bulk of the medium, after being reflected once at the interface. Using the
radiative transfer equation (2.12), (2.13) far= 0, we thus get

R(w)

1(0%, , o) = 28(1 — o) + e / dr e /“T(t, — 1, 11a) (n > 0) (2.21)
0

where the Fresnel reflection coefficieRtw) is given in table 1. The only contribution to
the outward intensity on this plane comes from the light rays which have experienced at
least one scattering event, namely

l [o.¢]
I(O+7 —MK, Mu) = - / dT e—‘f/ll.l"(.[, —HK, /J'u) (I‘L > O) (222)
M Jo
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The radiative transfer equation (2.12), (2.13), together with the boundary conditions
(2.21), (2.22) atr = 0", can then be recast in the integral form

I(t, o pta) = 28(p — pua)€ M + (K % T)(T, 1, o) (2.23)
Here and throughout the following, the star denotes the convolution product

fo'e] ld /
(K*rxr,u,ua):/ dr’/ "
0 1 2

The kernelK can be split into two componentsk = Kz + K;. The bulk kernelKp
contains the contributions to the intensity at depthrising from the scattering from either
smaller or larger depths. The layer kerg] takes into account the intensity being scattered
at depthz’ in the direction of the wall, then reflected there, and then scattered at depth
These kernels read explicitly

K(ra My r/’ M/)F(t/a M/a Ma)' (224)

/ / / / 1 —(t—1'
KB(I,MJ,u)=28(u—u)9(u(f—f))me( Wi

’ ’ / R( ) — T’
Ki(t,pu, v/, 1) = 28(u+u>9<u>7"e T+,

The final step consists in using (2.14) in order to derive from (2.23) the following closed
integral equation for the source function

T(t, 1, 1a) = o, a)€ M + (M % T)(T, 14, ia) (2.26)

which we refer to as the Schwarzschild—Milne equation of the problem.
The kernelM has the following two components, in analogy with the kerkiefrom
which it derives

(2.25)

/
Ma(r, e’ 'y = 0 (¢ — o P ) =

I
( 'f)” 2.27)
Mu a7 ) = 0=y PRt R
"
so that (2.26) reads explicitly
—T/ I i / 1d/’l’, Na— (=) /W [
L(z, 1, i) = po(ik, pa)€ " + | dr zu/po(u»u)e L', 1y wa)
0 0
00 1 du’ , ,
+/ dr// ZM,PO(M, —u)e T (i, )
T 0 1%
00 1dlu/ o
+ / dr’ f 5,0 RO Polia. e T, ' ). (2.28)
0 0

In the case of isotropic scattering, the phase functgtu, ') = 1 is a constant,
and the source functiol(z, u, u,) does not depend op. The Schwarzschild—Milne
equation (2.26), (2.28) thus takes a simpler form, that has been extensively studied in [15].
The rest of this section is devoted to an extension of the results derived there to the general
case of anisotropic scattering.

2.3. Solutions of Schwarzschild—Milne equation and sum rules

In the general case of conservative anisotropic scattering, the Schwarzschild—Milne
equation (2.26), (2.28) has a special solutibg(z, i, 1) Which remains bounded as
T — 00, Whereas the associated homogeneous equation has a linearly growing solution
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'y (z, n). More precisely, it can be checked by means of (2.18), (2.19) that both source
functions and the associated specific intensities have the following asymptotic behaviour for
large depthgt > 1), up to exponentially small corrections

sz, 1, pa) = 11(1ka)

Is(t, 1, pa) = 11(1a)

Cu(t, ) =t —pu(* —1) + 101"

In(t,w) ~ t — ut* + 1ot*.

(2.29)

The quantitiesry and 71(,) are unknown so far. Let us anticipate that they play a
central role in the following, in the sense that they will bear the full non-trivial dependence
of quantities on the scattering mechanism. These quantities also obey two groups of sum
rules, (2.37), (2.38) and (2.41), (2.42), to be derived below.

To do so, it is most convenient to introduce the Green'’s funafigir, «, t/, 1') of the
problem, along the lines of [15]. It is defined as the solution which remains bounded as
7 — oo of the equation

Gs(t,pu, ', 1) = po(u, W)8(t — ') + (M % Gg) (T, ., ', ). (2.30)
The kernelK and the Green’s functior gy possess the symmetry properties

K(t,pu, v, u)y =K', —u 1, —p)

Gs(t,p, v, 1) = Gs(v', ', T, =)

which merely express the time-reversal symmetry of any sequence of scattering events.
As a consequence of (2.26), the special solufigtr, ., 1) can be expressed in terms
of the Green'’s function as

(o9}
FS(Tv ,bL, /’La) = / dT/ e_T//U«aGS(-L-’ /’Lv T/v Ma)' (232)
0

(2.31)

We also define for further reference the following bistatic coefficient

o0
(s 1) = f dr &/ T (z, — 1, o)
0

o0 o0 ,
= / dr e */H / dr’' e "M Gg(t, —p, T/, ha)- (2.33)
0 0

The latter expression defines the bistatic coefficient for any complex values of its arguments
with Reu, > 0, Reu, > 0, even outside the physical rangeg, u, < 1. The symmetry
y (g, p) = ¥ (s, La) IS @ consequence of the properties (2.31). It is thus again due to
time-reversal symmetry.

On the other hand, a relationship between both solutiogér, 1) and Us(z, u, @)
of the Schwarzschild-Milne equation can be derived as follows. The Green’s function
Gs(t, u, v/, 1) is clearly asymptotically proportional to the homogeneous solutigt, ()
whent’ goes to infinity, namely

. 1
lim Gg(z,p, 7/, 1) = =Tg(t, 1) (2.34)
/=00 D

where the proportionality constand will be shown in a while to be equal to the
dimensionless diffusion coefficient (2.39).
As a consequence of equations (2.29), (2.32)—(2.34), we have

Tl(ﬂa) — lim )/(Ma, :u'b) —

1 o0
— / dr e My (T, —itg). (2.35)
) D Jo
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We now turn to the actual derivation of the sum rules obeyed by the quantities
defined so far, which are related to the so-callecand K-integrals, with the notations
of Chandrasekhar [1].

The first group of two sum rules is a consequence of the conservation of the flux in the
z-direction in a non-absorbing medium, given by the followiRgntegral

1d
F(r) = /1 g,ul(t, nw. (2.36)

It can indeed be checked, using equation (2.12), thigtdd = O.

We investigate first thé -integral Fy associated with the special solutidg(z, w, it,)-
Considering ther — oo limit determinesFg = 0, whereas considering the — 0 limit
yields the sum rule

1
d
/0 %T(u)y(u, Ha) = Ma (2.37)

where the transmission coefficiefit(w) = 1 — R(u) is given in table 1. Thet, — oo
limit of (2.37), together with (2.35), yields another sum rule, namely

1d

o

| G rwnmw =1 (2.38)
0

We can evaluate in a similar way thE-integral F; associated with the homogeneous

solutionT'y (z, ). This yields no independent sum rule, but leads to the identification of

the constantD of (2.30) with the dimensionless diffusion coefficient

D= 3 (2.39)
The diffusion coefficient indeed read3ynys = c{D = c¢£*/3 in physical units [1-4]. The
transport velocity indeed coincides with the velocity of light in vacuunto leading order
in the regimet > Ao.

Besides the sum rules (2.37), (2.38), which were already given in [15] for isotropic
scattering, the radiative transfer equation also admits another group of two sum rules, which
are novel in this context, and whose intuitive interpretation is less evident. Consider the
so-calledK -integral, again with the notations of Chandrasekhar [1]

1
d
K (1) =/ 7’%21(1, ). (2.40)
1

It can be checked that equations (2.12), (2.18)-(2.20) yikddt = —F/t*, hence
K(r) = —Ft/t* + Kp, with K, being independent of. By considering thek -integrals
associated with the special solutidrg(z, u, u,) and with the homogeneous solution
'y (z, u), we obtain after some algebra the following sum rules

t1(ia) 2 (2.41)

3 a

1
d
/0 7’“‘(1+ Ry (i, pa) =

1
d
A—§G+meumn=m. (2.42)
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2.4. Diffuse reflected intensity

The evaluation of the angle-resolved diffuse reflected intensity by means of the general
formalism exposed above closely follows the lines of [4,15]. We consider a half-space
geometry, and we assume that the limiting plane of the sample is subjected to a cylindrically
symmetric incident beam, characterized by an angle of incidéhce This technical
assumption includes the case of a plane wave at normal incidénce 0). Under these
circumstances, the diffuse reflected intensity per solid angGlg réads

dR(a — b) R cost, T,T,
= AN (04,6p) =
de, Arm? g i

Y (Was ip) (2.43)

where we have again used the notations of table: & ng/n; is the index mismatch, and
T, = T(u,) and T, = T (u,) are the transmission coefficients in the incident and outgoing
directions, respectively.

The essential factor in the result (2.43) is the bistatic coefficieft,, u,), whose
definition and general properties have been exposed in section 2.3. It will be evaluated
more explicitly in the large index mismatch regime in section 3, and in the very anisotropic
regime in section 4.

2.5. Diffuse transmitted intensity

In this section we consider the angle-resolved mean transmission of an optically thick slab,
of thicknessL = b¢, with b > 1 being large but finite. A generalization of the reasoning

of section 2.1 allows us to write down the following Schwarzschild—Milne equation in this
geometry

!

T 1 d
_ n o
Ty (T, 1, ta) = po(it, tra)€ "/ +/ dT// 5,0 POl uHe I, W )
0 0

b ld / , ,
+/ o f " polu, —u)e O (1, — i, )
T 0 2“’

b 1 d/'L, , ,
+/ dr// CR(W)po(u, e TTOT (¢, — 1, )
0 0 2u

b 1 du’ o
[ o [ RCr P~ PO ). (244)
0 0o 2
The solution of this equation for a thick slab can be constructed from both soldtions
andI'y of the half-space geometry, by means of a matching procedure, along the lines of
[4,15]. Using the asymptotic forms (2.29), we obtain

Po(ro o) — 2P moy (¢ finite, b— 7 1)
Lyt o ) b + 2ot (2.45)
b\ts Ly La) ™~ .
T1(Mka) -
—Tyb—r1,— b — 7t finite, 1).
b1 200t alb—1,—n) b-r > 1)

Both expressions lead to a linear (diffusive) behaviour [3,15] in the bulk of the sample
(> 1,b—1 > 1), namely

Ty(T, i, fhe) = %[b — T4t +urt =]+ 0E T, e ). (2.46)
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The derivation of the diffuse transmitted intensity per solid angle elem@ptatjain
closely follows the lines of [4,15]. We obtain

dT (a — b) T* r 4 T
= AT(0,,0,) = —— AT (6,,6 2.47
a2, b+ 21gT* ( b) L + 271l ( b) ( )
with
cosd, T,T,
AT (04.6) = () () (2.48)
127m?= papup

where we have again used the notations of table: & ng/n; is the index mismatch, and
T, = T(u,) and T, = T (up) are the transmission coefficients in the incident and outgoing
directions, respectively.

The essential ingredient in the above result is the functigix), whose definition
and general properties have been exposed in section 2.3. It will also be evaluated more
explicitly in the large index mismatch regime in section 3, and in the very anisotropic regime
in section 4.

The result (2.47) shows that the effective thickness of the sample 4s2z9t*)¢ =
L + 2t9¢*. In other wordszo = 1ol* represents the thickness of a skin layer. This quantity
is also referred to as the injection depth, or the extrapolation length of the problem.

2.6. Enhanced backscattering cone

The general formalism exposed above can be extended to the study of the enhanced
backscattering phenomenon, which takes place in a narrow cone in the vicinity of the
exact backscattering direction [5]. This phenomenon is due to the constructive interference
between any path in the medium and its time-reversed counterpart. One of the goals of
this section is to derive a quantitative estimate of the width of the cone, with emphasis on
its dependence on the anisotropy of the scattering mechanism. As recalled in section 1,
the form of the backscattering cone can be predicted by summing the so-called maximally
crossed diagrams [10,11]. This can be performed by means of a careful treatment of
radiative transfer theory [10-12, 15, 16].

We restrict the analysis to normal inciden(@g = 0), and to the geometry of a half-space
diffusive medium. We introduce the dimensionless transverse wavevector

Q=q¢ (2.49)
and its magnitude
Q0 =gl = ko0 = k146 > 0 (2.50)

where6’ and 6 are the incidence angles of the outgoing radiation, &ndnd k; are its
wavenumbers, respectively inside and outside the diffusive medium, according to table 1.

Along the lines of [10-12,15,16], the reflected intensity in the vicinity of the
backscattering direction, i.e. fer« 1, k3¢ > 1, and Q fixed, takes the form

T (1)
A m?

AC(Q) ~

[¥(L, 1)+ yc(Q) — po(l, —=1)/2] (2.51)
where

e the sum of ladder diagrams,(1, 1), yields the background reflected intensity in the
normal direction, in agreement with equation (2.43);

o the sum of the maximally crossed diagrams(Q), represents the contribution of the
interference between the sequences of any number 1) of scattering events and
their time-reversed counterparts;
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e the subtracted third term is the contribution of the single-scattering events 1),
which are invariant under time inversion, and must not be counted twice.

We define the enhancement factor
A€ — po(1, =1)/2
Bg)— AT@ 7@ pol=1)/2
AR(0, 0) y(1,1)
It turns out that the peak value of the interference contribution coincides with the background
term, i.e.yc(0) = y(1, 1). Hence the enhancement factor at the top of the cone, namely

_ po1, -1

2y(1, 1)
nearly equals two, up to the small contribution of single-scattering events.

We now turn to the actual determination ¢f(Q) [10-12,15,16]. Basically,
the transverse wavevect@ causes a dephasing which amounts to replacing the pure
exponential damping expt/u) of unscattered intensity by the complex exponential
exp(—(1 — iQ - n)r/u). Because of the vector nature @, the source functions
r™(Q, r, ) pertaining to all sectors defined by the azimuthal integeare coupled to
each other.

We choose coordinates such th@tis oriented along the positive-axis, in order to
simplify notations. The source functions then obey cougledependent Schwarzschild—
Milne equations of the form

F"(Q, 7, 1) = 8nopo(e, DE™+ Y (M"PTO)Q, 7, ) (2.54)

—oo<k<+00

(2.52)

B(O) =2 (2.53)

generalizing equation (2.26). Th@-dependent Schwarzschild—Milne kernels ra#t© =
MR 4 M0 | with

Ml(i k)(Q, T, u,t,W)y=0WE—-1)———"¢€ ( )1 Jon—i <Q . \/iﬂz)

/

W]
N m (s = 1) / N T+7
M0t e ) = 0 P R el Jmk<Q PR
(2.55)

where J,,(z) denotes the Bessel function of integer order. The source functions have the
following property

r(Q,r,u) = (-H"T"™(Q, 7, 1 (2.56)
which they inherit from an analogous symmetry property of the Bessel functions, i.e.

J—m(z) = (_1)me(Z)’
Finally, the shape of the backscattering cone is given by

ve(Q) = /Oo dre 19,1, -1). (2.57)
0

The top of the backscattering cone, described by the s@hdéhaviour ofy-(Q), is of
special interest, especially because of its universality. Indeed it is due to the contribution
of long paths in the diffusive medium, along which the radiation undergoes many scattering
events. In contrast, the wings of the cone, corresponding to a large reduced wavévector
only involve short sequences of two, three, etc scattering events, and are therefore expected
to depend on the details of the scattering mechanism. This is already apparent in the
subtracted term in equations (2.52), (2.53), which involves the single-scattering cross section
in the direction of exact backscattering.
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The universal smal@ behaviour of the backscattering cone can be determined as
follows. We look for an approximate solution f@ « 1 to the coupled Schwarzschild—
Milne equations (2.54) as a decaying exponential, with an inverse extinction lepgthes
expansions in Legendre functions of the form

r(Q, 7, ) =e*"G"(Q, ) With G™(Q, ) = Y comPrm()- (2.58)

e|m|
First, we observe that the arguments of the Bessel functions in the kernels (2.55) are
proportional toQ. Since we havd,, (z) ~ (z/2)" /m! for small z andm > 0, we therefore
expect that the coefficients of the expansion (2.58) fall oftgs ~ Q'"!. By virtue of
the symmetry (2.56), we can thus restrict the analysis to the seatersO andm = 1.
Second, we make the hypothesis, to be checked later on, that the inverse extinction length
s IS proportional toQ. Then, deep in the bulk of the medium, i.e. for> 1, the integral
equations (2.54) can be approximated by differential equations, obtained by expanding the
source functions in powers 6f'—1), keeping only the first two derivatives, and consistently
the first two powers ofD. We thus obtain the following two coupled equations

2

row,r,w= D<°>[r<°><Q, T, 1) - MdEF(O)(Q, T, 1)+ /LZ%F(O)(Q, T, 1)
T T
Q2

-5 - pHrQ, v, w) + V11— prYQ, r, w + - } (2.5%)

rYw, r, p) =DP [F(WQ, T, ) — %1 —1rOQ, 7, w) + - } : (2.5%)

We first solve (2.58) as follows. Since we only need a leading order estimate of
rY(Q, , u), we only keep the first coefficient ; of the expansion (2.58). Using (2.16),
(2.17), we thus obtain

11~ —%(T* — Dco,o- (2.60)

By inserting this last result into (2.89, and making use of (2.16) and (A.4), we obtain the
following recursion relations for the coefficientsg

ceo Q%r* e e+1 , Q%
mN(“ 2 >C5’0+S°(2£—1”‘1’°+2£+36”1’° Tt

L =1 202 4+2¢0 -1
x <(2z D@ -3t e+ 3O
C+DH(+2
(2L +3)(2¢ + 5) C‘”"’)'
It is clear from the structure of these relations that, whgns small, the coefficients
ce.0 ~ Qf decay rapidly. Keeping this hierarchy in mind, and using= 1, we obtain the
estimates

(2.61)

c10” Q(t* — Deopo (2.62)
and
so &~ Q. (2.63)

This last result corroborates the hypothesis made in the derivation of (2.59). We shall come
back to its meaning at the end of section 2.7.
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The next step also follows the lines of [15]. The sm@llbehaviour of'¢(Q, 7, 1)
has a term proportional t@, which is proportional to the homogeneous solutitp(z, )
of the Schwarzschild—Milne equation (2.26), (2.28). Indeed, consider the right-hand side
of (2.54) form = 0. The leading?-dependence there comes either from the actialf 6%
on ', or from the action ofM/©*Y on &Y, All these explicit Q-dependences begin
with Q2. Putting everything together, we are left with the following estimates of the source
function"©@(Q, 7, u). For Q « 1 and fixedr we have

r%Q,t,w) =rs(r, 1, 1) — QuDTu(z, 1) + O(Q? (2.64)
whereas forQ « 1 andt > 1 simultaneously we get
r%oQ,t, 0 =u@e "1+ Q(u(r* — 1) — 1or*) + O(Q?). (2.65)

The universal peak of the backscattering cone is then evaluated by inserting the
estimate (2.64) into (2.57), using (2.33), (2.35). We thus obtain the following expression

ye(Q) =y(1,1) (1 - Ag + O(QZ)) (2.66)
0
where the width of the cone reads
3y (1,1
= 2.67
71(1)%z* (267)
i.e. in physical units
_yabh 1 (2.68)

‘L'l(l)2 klﬁ*
with k1 being the wavenumber of radiation outside the diffusive medium. This simjste 1
law is already predicted by the diffusion approximation [31, 32].

2.7. Extinction and absorption lengths

Up to now we have assumed that the diffusive medium is conservative. This means that the
light only experiences elastic collisions; there is neither absorption, nor inelastic scattering,
implying the normalization (2.2) of the phase function. We now want to discuss briefly the
case of a weakly absorbing diffusive medium, characterized by a non-trivial atbedoh
that 1— a « 1. In this case the diffuse intensity is expected to die-off exponentially inside
the medium, with a characteristic absorption lengtas

The known expression [2,3,12] of the absorption length can easily be recovered by
means of the formalism exposed in the previous section, in the case of general anisotropic
scattering and in the regime of weak absorption. We shall actually determine the extinction
length of the more general problem defined by the cougledependent Schwarzschild—
Milne equations (2.54). We look for slowly varying source functions of the form (2.58),
along the lines of section 2.6. The main difference is that we have agw= a # 1.
It turns out that the estimates (2.60), (2.62) of the amplitudgs still hold, whereas we
obtain

31—
2 Q%+ % (2.69)
The Q-dependent extinction length in the presence of absorption therefore reads
14 1
Lex(Q) = — =~ O«1ll-axl). (2.70)

1/2
S _
0 (Q2 + Ll,*“))
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The usual absorption length is obtained by settfhg- 0 in the above expression, namely

eer \?

in agreement with [2, 3, 12]. Another particular case is conservative scattering, in the absence
of absorption, where we recover the result (2.63), namely

£ 1
Lex(Q) ~ 5 ~ 5 (2.72)

This simple result holds for a general anisotropic scattering. It is a manifestation of
the isotropic character of the long-distance diffusive behaviour of the multiple scattering
problem. We shall also come back to this point in section 5.

3. Large index mismatch regime

In this section, we extend to the general case of anisotropic scattering the approach of [15],
which predicts the behaviour of quantities in the regime where the optical indicaad

n; of the diffusive medium and of the surroundings are very different from each other, i.e.
when their ratiom = ng/n; is either very small or very large. As already pointed out

in [15], important simplifications occur in these regimes of a large index mismatch, where
the Fresnel transmission coefficient of the boundaries of the medium is very small. To be
more specific, radiation cannot enter the medium (respectively, leave the medium) in the
limit m <« 1 (respectivelyn > 1), except at normal incidence. Reference [12] already
contains part of the results of this section.

3.1. Diffuse reflection and transmission

Along the lines of [15], we evaluate the reflected and transmitted intensities in the large
index mismatch regime by means of the following singular perturbative expansion of the
Green'’s functionGg(z, u, T/, '), defined by (2.30).

The starting point consists in noticing the identity

ML(T7 M, T/v M/) = R(_M/)MB(Tv M, _t,7 _M/) (31)
between both kernels defined in (2.27). UsiRgu) = 1 — T (), we can recast (2.30) as
Gs(t, p, T/, 1) = po(p, W)8(r — ')

0 1 dl/L//
+[ df”/ 2 [MB(‘C - t”v M, Ov I'LH) + MB(‘L' + T,/v M, 07 _I’L”)]
0 -1

xGgs(", 1", ', 1)
[} 1 dM//
_ [ dr/// 5 T(/,L//)MB(‘L', W, —‘E//, _M//)GS(T//, M//’ ‘E/, //L/)- (3.2)
0 0

In the limit of an infinitely strong index mismatch, i.e. fer = 0 or m = oo, the
transmission coefficierif (1) vanishes identically, so that the last integral of equation (3.2),
involving T (w), is absent. It can be checked that the remaining terms only determine the
Green'’s function up to an additive constant. This constant is only fixed by the action of the
last integral, involvingT (i), in (3.2). It can therefore be expected to divergenas> 0
andm — oo.

In order to demonstrate this explicitly, we expand the Green’s function according to

Gs(t,pu, ', ') = Cs + Go(r, ., T/, 1) + - - - (3:3)
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with the hypothesis thaf's diverges, wherea&€y(z, u, v/, ') remains finite, and the dots
stand for terms which go to zero, as— 0 orm — oo. Thefinite part Go(z, 1, v/, 1)
obeys the following equation

Go(t, pu, ', ') = po(, n)8(t — ')

00 1 du”
+/ df/// g [MB(I - T//’ M, O’ /“L//) + MB(T + T//v “, Ov _MN)]
0 -1

d "
'; T(uW"YMg(t, p, —t", —p")

(3.4)

1
G " " ! / oOd "
xGo(t", u", v, u) — Cs T
0 0

together with the consistency condition

00 00 1 d 1 d /
/ dr / dr’ / = / WMyt + 7', 1,0, —p)Go(x', ). 7" W) =0 (3.5)
0 0 12 Jo 2

derived along the lines of [15].
The constantCy of the expansion (3.3) can be derived by integrating equation (3.4)
over the variables & v < oo and—1 < u < 1. This yields

4
Cy = T (3.6)
where7 is themean flux transmission coefficient
4 2
) dm(m +2) m < 1)
3(m + 1)2
T=2] uT(uwdu= 42 3.7)
0 mi—i—l) (m>1)
3m2(m + 1)2 -

This quantity assumes its maximum = 1 in the absence of any index mismatch, i.e. for
m = 1, and it vanishes in both cases of a large index mismatch, according to

8m
- (m<kl

T~ 3 (3.8)

33 (m>1).

The asymptotic behaviour in the limits <« 1 andm > 1 of the quantities pertaining to
reflection and transmission is immediately obtained by replacing in equations (2.33), (2.35)
the Green’s functiorGs(z, u, t/, w) by its leading constant terrfig. We thus obtain

TR~ r(u)%iﬂ (n u)~4uaub
0 37 1 ,]— Y as b ,]-

These predictions are identical to those derived in [15], in the case of isotropic scattering.
We have thus shown that the quantities which determine the diffuse reflected and transmitted
intensities do not dependt all on the anisotropy of the cross section in the large index
mismatch limit.

: (3.9)

3.2. Enhanced backscattering cone

The shape/c(Q) of the cone of enhanced backscattering for a normal incidence can also
be evaluated analytically in the regimes< 1 orm > 1 of a large index mismatch. By

inserting the estimates (3.9) into the general result (2.67), we find that the width of the cone
is small in the large index mismatch regime, since it is proportional to the mean transmission
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7. This observation suggests that we should consider the scaling regime wher@ hoth
7 are simultaneously small.

In order to investigate this regime, we first recast tidedependent coupled
Schwarzschild-Milne equations (2.54) in a form similar to equation (3.2). We then look
for a solution of the form (2.58), where the inverse extinction length: Q is taken from
equation (2.63). We then proceed along the lines of section 3.1, integrating both sides of the
coupled Schwarzschild-Milne equations over the variables®< oo and—-1 < u < 1.

The integrals over’ which are independent of the transmissibe) can be performed
explicitly, whereas the)-dependence of the integrals involvifigit) can be neglected in
the scaling regime. We thus obtain the following equations for the functiBfiy Q, w)

ld,bL - ldM ldM/
/717G (Q,M)—QSm,o—Q[l7/0 5

1 d,u 1 d,u,' ) / /
+ 2 /_17 _1717111(#,#)A(m’k)(Q,,u)G(k)(Q,u) (3.10)

WT W) pm (i, )G (Q, 1)

—oo<k<+00
with
1 _ovi—uz o\
A(m,k)(Q’llL) — : > ( Q . 1% > )
V1I+ 01 —pH)\1+V1+0°(1—pd)

(3.11)

5 (=pm* (m < k)
1 (m > k).

The solution of equation (3.10) in the scaling regime is as follows. Along the lines
of section 2.7, we only keep the sectors = 0 andm = 1, and only the leading
amplitude in the expansion (2.58) in each sector, namely weG$8(Q, 1) ~ coo,
GY(Q,n) ~ c11vV1— p? Inserting these expressions into (3.10), all integrals can be
performed, to leading order i@. We thus obtairc; 1 ~ —(Q/2)(t* — Dcg0, in agreement
with equation (2.60), while equation (2.57) yielgs(Q) ~ coo. After some algebra, we
are left with the following scaling result:

1
N 1,7 «1). 3.12
re QX o ons  (@<LTLD (3.12)
The smallQ expansion of this prediction reads
4  16Qt*
()~ = Ty (3.13)
The width of the cone therefore scales as
3T
AQ ~ (3.14)
4+

in agreement with the general formula (2.67), together with the results (3.9).

The comment made at the end of section 3.1 still applies here. The scaling form of
the enhanced backscattering cone in the regime of a large index mismatch does not depend
at all on the anisotropy of the scattering cross section, apart from the simple power of
already predicted by the diffusion approximation [31, 32].

4. Very anisotropic scattering

In this section we investigate the regime where the scattering cross section is very
anisotropic, i.e. strongly peaked in a narrow cone of wiéths <« 1 around the forward
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direction, with@®2 _ = (®2). We thus have + o ~ 02, /2 < 1, so that the anisotropy

rms —

parameterr* ~ 2/0©2 is very large. The wavelengthy of radiation in the medium, the
scattering mean free path and the transport mean free pdthcan therefore be considered
as three independent length scales <« ¢ « €*), besides other characteristic lengths, such
as the sample thickneds and possibly the absorption lengihys

The interest in this very anisotropic regime is twofold. First, we shall show that the
radiative transfer problem in the absence of internal reflections is exactly solvable in this
regime, just as it is for isotropic scattering, whereas the intermediate situation of a general
anisotropy can only be treated numerically. Second, the dependence of physical quantities
on anisotropy can be expected to yield the largest effects in the very anisotropic regime.
We shall come back to this point in section 5.

4.1. The example of large spheres

We first recall how very anisotropic scattering can be realized experimentally. We consider
the multiple scattering of light by large dielectric spheres, with radiusuch larger than
the wavelengthyy in the medium, i.e. with scale paramefgu > 1, so that geometrical
optics can be used. Furthermore we assume that the optical indefkthe spheres is very
close to the mean index, of the medium, i.e.

:172 —ms=1+8s (85| < 1). (4.1)

The study of the scattering cross section of electromagnetic waves by dielectric spheres
is an old classical subject. The full solution was first derived by Mie in 1908. Reference [33]
provides an extensive overview of this field. The regikge >> 1 and|ds| <« 1 still has to
be split into several subcases, according to the value of the combin&fjbsu. This can be
understood as follows. In the framework of geometrical optics we can distinguish between
the diffracted light, which is outgoing within an angii# ~ 1/(koa), independent oy,
and the refracted light, which is outgoing within an an@gs ~ |8s|, independent okga.

From now on we concentrate our attention on the regjf¢ < 1, kpa > 1, and
|8slkoa > 1. In this regime we hav®uim < Oreir < 1. The cross sections associated
with each of the above processes asymptotically reags~ orerr ~ ma?, so that the total
elastic cross section ~ 2ra? is twice the geometrical one. This is te&tinction paradox
We make the following approximations. We neglect the diffraction phenomenon by setting
Ogir = 0. We treat the refracted light according to the laws of geometrical optics, as
illustrated in figure 1. We neglect all the rays which are reflected at least once at the surface
of the sphere, so that we only have to consider the refracted ray drawn on the figure. The
corresponding phase function reads

__4singcosp | dB
Drefr(©®) = T sine®  |de (4.2)
with the notations of figure 1, which also imply
O ~ —25stang. (4.3)
Equations (4.2), (4.3) lead to the Lorentzian-squared scaling form [33]
1652
Drefr(®) ~ m (4.4)

The cross section is thus strongly peaked in the forward direction, as anticipated.
We now turn to the evaluation of the coefficient e corresponding to refracted light.
The integral (©%)err = [0 O%prerr(®)© dO, with the phase function of equation (4.4),
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b=asinf

sinp =mgsina
6 =2(a—f)

Figure 1. Laws of geometrical
optics for the refraction of light by
a large dielectric sphere.

is logarithmically divergent. A more careful treatment is therefore needed, which consists
in using directly equation (4.2), choosing= sir? g as the integration variable. We thus
obtain

1 4 Umax
Direhr = —s + —5 / wdu vV (L —u)(m3 — u) (4.5)
0

2 2
3m§  my

with umax being the smaller of both numbers 1 and. The integral in (4.5) can be
performed explicitly for bothng < 1 andmg > 1. In both cases we obtain

A .
@ renr & 1— 2551 5 wih A= 2692 (185 < D). (4.6)
S
The anisotropy parameter can be derived from the above estimate, not forgetting that
odifr = Oretr = /2 implies 1— @y = (1 — @y rerr)/2. To leading order fofds| < 1, this
yields
o* 1
= 4.7)

T
851N 55

It is therefore evident that large spheres with a weak dielectric contrast provide a physical
instance of very anisotropic scattering, as described at the beginning of this section, with the
refraction angleB,e ~ |85| < 1 playing the role of®s, up to a logarithmic correction.

We shall come back to this last point in section 5.

4.2. Scaling limit of the Schwarzschild—Milne equation

We now show that the general formalism of section 2 undergoes important simplifications in
the regime of very anisotropic scattering. These will allow us to solve the Schwarzschild—
Milne equation in the absence of index mismatch at the interface. This analytical solution,
to be described in sections 4.3 and 4.4, therefore shows that both limiting cases of isotropic
scattering and of very anisotropic scattering are nearly on the same footing as far as the
existence of exact results is concerned.

The simplifications in the regime of very anisotropic scattering can be understood in
physical terms as follows. Consider the random sequence of scattering events experienced
by a light ray. At every scattering event, the directiorof the ray is only modified by a

slight amount of orde®ms, with ®2 ( ~ 2/7*. The extremity of the vecton therefore
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performs a Brownian motion on the unit sphere, with a small angular diffusivity®?, ..
A similar picture has long been used in the context of semiflexible polymer chains: the
so-called Kratky—Porod theory models polymers as continuous persistent walks, whose unit
tangent vectors obey a diffusion equation on the sphere (see [34] for a review).

In more quantitative terms, the relationship (2.7) betweenrihdependence of the

specific intensityl (r, n) and the source functiofi(r, n) takes the form
F'(r,n)~A+eA)I(r,n) (4.8)

where A is the Legendre operator (Laplace operator on the unit sphere)

a 92 1 92
A=cotd —+ —+ ———. 4.9

26 T 962 T sig ag? *9
As a consequence, the integral operatB¥®’, introduced in equation (2.15), simplify to
the following differential operators

DM~ 14 eA™ (4.10)
where

. 92 m? a2 d m?
A" =cotd — + —

_ S R YR S 4.11
06 T 962 " site M au T T 1o 2 (4.11)

is the Legendre operator in the sector defined by the azimuthal integer
The angular diffusivitye is then determined by observing th& (u) = u is an
eigenfunction ofA©, with eigenvalug—2), and of D©, with eigenvaluew, by virtue of
equation (2.16). We thus identify; = 1 — 2¢, hence, using (2.20),
1 ¢ 02
= = R 4.12
¢ 2t 2% 4 ( )
in agreement with the above heuristic estimate.
The radiative transfer equations (2.12) thus assume the differential form

2r*ud%1<'">(r, w) =AM () (4.13)
which demonstrates that quantities vary over length scales of ardert*, i.e. z ~ ¢£*.

In the next two sections we present our exact analytical predictions concerning observables
pertaining to optically thick slabs, in the regime of very anisotropic scattering, in the absence
of internal reflections. The analysis roughly follows the presentation of section Il of [15],
devoted to the case of isotropic scattering.

4.3. Exact treatment in the absence of internal reflections: the homogeneous case

This section is devoted to an analytic determination of the solufigriz, u) of the
homogeneous Schwarzschild-Milne equation in the regime of very anisotropic scattering,
and of the associated quantities of interegtand 7 (u).

It is convenient to consider the Laplace transfogm(s, 1) of I'y(z, n), defined as
follows

gu(s, n) = / dr Ty(z, —p)€e’” (Res < 0). (4.14)
0
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The Schwarzschild—Milne equation (2.26), (2.28) can be recast as

DO [gffrs“)} (—1<p <0)
gn(s. 1) = e (4.15)
DO |:gH(s, ) —t Tl(li)/‘?’] ©<p<1)
1+spu
since we havegy(—1/u, n) = t*t1(w)/3 for 0 < u < 1, as a consequence of

equations (2.35), (2.39).
We now expand (4.15), using the expression (4.10), (4.12) of the opePdtor We
introduce the rescaled Laplace variable

o =2st* (4.16)
as well as a new unknown functidn, (o, 1), defined as follows
4t%(L+ sphp (o, ) (-1<pu<0
gu(s, ) = w2 . (4.17)
471+ swhu(o, p) + t7ta(n)/3 O<p<1.

We assume that; (1) vanishes faster than linearly jnfor &« — 0. This hypothesis will be
checkeda posterior as it will turn out thatry () ~ u%? for © — 0 (see equation (4.55)).
The functioniy (o, 1) is then continuously differentiable as a function gf and it obeys
the following equation

(-1l<u<0

0
(A — oo, 1) = { w06 OeneD (4.18)

By means of the change of variable
w = tanhx (4.19)

equation (4.18) can be recast in the form of the following inhomogeneous@ober
equation on the real-line

(o, x) —oV(x)hy(o, x) = { 0 <0 (4.20)
V(x)v(x)/6 (x > 0.
In this formula the primes denote differentiation with respect torhe potential
V (x) = tanhx (1 — tantf x) (4.21)
is an odd function ofc, such thatV (x) dx = x du, and we have set
T1() = uv(x) O<u<lx>0. (4.22)

Equation (4.20) is a self-consistent equation for the two unknown functigiis, x)
andv(x). Analyticity properties in the complex-variable turn out to allow for an exact
analytical solution of this equation.

We introduce a basis of two elementary solutiofis, (o, x), ux(o, x)} of the
(homogeneous) Sobdinger equation

u'(o,x) —oVx)u(o,x) =0 (4.23)
with the following asymptotic behaviour
u(o,x)~1 uz(o,x) ~ x (x = —00) (4.24)

up to exponentially small corrections. Similarly we introduce the basi&, x), va2(o, x)},
with the asymptotic behaviour

vi(o,x)~ 1 vo(o, x) &~ x (x = 00). (4.25)
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The Schédinger equation (4.23) admits solutions with the above boundary conditions, since
the potentialV (x) vanishes exponentially as— +oo. The four solutions above are entire
functions ofo, i.e. they are analytic in the whole-plane. Furthermore they are related by
the following identities

v1(o, x) = u1(—o, —x) vo(0, x) = —us(—0o, —x) (4.26)

because the potenti®(x) is odd.
We recall that, if«(x) andv(x) are any two solutions of the Sditinger equation (4.23),
with the samer, their Wronskian

Wiu, v} = u(x)v'(x) — u' (x)v(x) (4.27)

is independent ofc. The boundary conditions (4.24), (4.25) imply that both bases of
functions have unit Wronskian, namely

W{ug, uz} = Wfvy, v2} = 1. (4.28)

For generic values of the parameter both bases of solutions are related by a 2
transfer matrixof the form

v\ _ (F) G \(m
()= #5) () *.29)
The three functions which enter equation (4.29) are entire functios tie determinant
of the matrix isF (o) F(—o) — G(oc)H (o) = 1; as a consequence of equation (4.26)¢ )
and H (o) are even functions of .

The above functions also govern the non-trivial asymptotic behaviour of the bases of
solutions

ui(o,x) ~ F(—o) — G(o)x uz(o,x)~ —H(o)+ F(o)x (x —> o0)

(4.30)
vi(o,x) =~ F(o) 4+ G(o)x va(o,x) ~ H(o) + F(—o)x x > —o0)
as well as their mixed Wronskians
Wiuy, v1} = G(o) Wiu, v2} = F(—o) (4.31)

Wiuz, v1} = —F(o) W{uz, vo} = —H (o).

The first terms of the Taylor expansion ©f(o, x) anduz(o, x) aroundo = 0 read

ui(o,x) =1- g(1+tanhx) R
2 X (4.32)
u(o,x) =x+o (5(1 —tanhx) + In(2 coshx)) 4

We have also determined the terms of oraér which are too lengthy expressions to be
reported here. They imply

Flo)=14+0+0%/2+--. G(o)=0%/3+--.

4.33
H(o) = (7/6 — 72/36)5% + - - -. (4.33)

On the other hand, large values of the complex parametarrespond to theemiclassical
regime for the Sclirdinger equation (4.23), where the behaviour of the functioris, x)

and uy(o, x) can be derived by means of a WKB-like approximation. This regime is
analysed in detail in appendix B. Let us mention that the wavefunctions display oscillations
when eithers > 0 andx < 0 oro < 0 andx > 0, whereas they are growing or decaying
exponentially in the other two cases.
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The function G(o) deserves some more attention, since it will play a central role
in the following. G(o) can be viewed as thiunctional determinaniof the Schoédinger
equation (4.23), in the following sense. Assumés such thatG(c) = 0. We have then

v1(o, x) = F(o)ui(o, x) ui(o, x) = F(—o)vi(o, x) F(o)F(—-o0) =1 (4.34)

In other words, for such a, the Schédinger equation (4.23) has a bounded solution
over the whole real line. Throughout the following, using slightly improper terms, such

a value ofo is called aneigenvalueof the Schédinger equation, and the corresponding
function vy (o, x) is referred to as the associateienfunction The semiclassical analysis

of appendix B demonstrates that there is an infinite sequence of real eigenvalues. We label
them by an integer-co < n < oo, so thato, > 0forn > 1,09 =0, ando_,, = —0,,. The
associated eigenfunctions(o,, x) are orthogonal with respect to the following indefinite
metric

/ V1(Om, X)V1(0n, X))V (x) dx = NyySn (=00 <m,n < 00). (4.35)

[o¢]
The squared norma&/, obey the symmetry property
N_, N,
F(=0,) ~ F(oy)
as a consequence of (4.34). The eigenfunctigi®, x) = 1 associated with the zero mode
oo = 0 is peculiar, since its squared norm reads= 0. As a consequence, the basis of

eigenfunctiongv; (o, x), n # 0} only spans the set of bounded functiofiéc) on the real
x-line such that

(4.36)

/ f)V(x)de =0. (4.37)
For such functions, we have
f(x) = chvl(anv -x) (438)
n#0
with
Cp = Ni /OO v1(0y, x) f(x)V (x) dx. (4.39)

The determination of the contribution of the zero mode to functigis) which do not
obey the condition (4.37), such as, for example, a constant, requires more care. An elegant
way of dealing with this problem consists in introducing a deformation paramets we
shall see in section 4.4.
It is advantageous to factor the entire functiGiio) as follows

o2
G(o) = §P(O')P(—U) (4.40)

with the notation
P@) =T] (1 + 0). (4.41)
n}]_ Uil

The explicit solution of the inhomogeneous Sidinger equation (4.20) now goes as
follows. Sincehy (o, x) is a regular function ok in the x — —oo limit, it is proportional
to u1(o, x) for x < 0, namely

hy(o,x) =ay(0)ui(o, x) (x < 0). (4.42)
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For x > 0 we solve equation (4.20) byarying the constantsiamely we look for a solution
of the form

hy(o,x) = by (o, x)vi(o, x) + cy (o, x)v2(0, X) (x > 0). (4.43)
The unknownconstantsby (o, x) andcy (o, x) obey the requirements

by (o, x)vi(o, x) + (o, X)va(o, x) =0 (4.44%)

bl (o, x)vy(0, x) + iy (0, X)v5(0, x) = V(X)v(x)/6 (4.44%)

where the primes again denote differentiations with respecik.to equation (4.44)

is a constraint imposeda priori, in order to break the large redundance of the
representation (4.43); equation (4b34is then a consequence of equation (4.20).
Equation (4.44) can be solved faér, and ¢}, using equation (4.28). Integrating the
expressions thus obtained, we get

by (0, x) = bp (o, o0) +/ v2(0, Y)v(y)V(y) dy/6
x (4.45)

CMmm=—/ vi(0, V() V() dy/6.

Indeed there cannot be a non-zero constatitr, co), because this would correspond to an
unacceptable singular solution of the fofrg (o, x) ~ x ~ In(1 — w) for p — 1.

Both expressions (4.42) and (4.43) have to match at 0, together with their first
derivatives. These two conditions determing(o, 0) andcy (o, 0), and some algebra then
leads to the identity

G(0)ag(o) = —cy(0,0) = /00 v1(o, x)v(x)V(x) dx /6. (4.46)
0

We can argue on equation (4.46) as follows. Sipgés, 1) is analytic in the half-plane
Res < 0, ay (o) has the same property for Re< 0, so that the zeroso, of G(o) cannot
be poles ofiy (o). They are therefore zeros of; (o, 0). On the other hand, the,’s are not
zeros ofcy (o, 0), since the integral expression in (4.46) is positive for 0. Hence they
are poles ofiy (o). The final step concerns the smallbehaviour of the quantities involved
in (4.46). The asymptotic behaviour (2.29) Bf; (z, 1) Yields the following double-pole
structure for its Laplace transform neat 0

1 t*(to+p)
gl =5 — 400 (=0 (4.47)
which implies the following smalt behaviour ofay (o)
1 1-
a0)= S5+ 2401 (0 —0). (4.48)
o 20

We thus obtain finally

1 P(o
o2P(—0) —cy(o,0) = % (4.49)
Equation (4.49) can be considered as an explicit result. Ind&ed, defined in (4.41), is
for all purposes a known function, since the eigenvalgesan be determined numerically,
essentially with arbitrary accuracy, via the partial-wave expansion procedure of appendix A.
Furthermore the semiclassical analysis of appendix B determines the asymptotic behaviour
of the eigenvalues in the regime of large quantum numbers 1).

ap(o) =
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Table 2. Comparison of the numerical values of various quantities of interest from the exact
solutions in the absence of internal reflections. First row: isotropic scattering, after [15];
second row: very anisotropic scattering (this workdp¢* is the thickness of a skin layer;
71(1) and y(1, 1) respectively yield the transmitted and reflected intensities in the normal
direction; B(0) is the peak value of the enhancement factor at the top of the backscattering
cone;t*AQ = k1£* A0 is the dimensionless width of this backscattering cone. The third row
gives the relative difference of the second case with respect to the first one.

) 71(1) y(1, 1 B(0) *AQ
Isotropic ¢* = 1) 0.710446 5.036475 4.227681 1.881732 1/2
Very anisotropic {* > 1) 0.718211 5.138580 4.889703 2 0.555543
A (%) 11 2.0 15.7 6.3 11.1

As a first consequence of the above results, we can determine the reduced thigkness
of a skin layer, i.e. the reduced extrapolation length, by comparing the sniahaviour
of the expression (4.49) fary (o) with the expansion (4.48). We thus obtain

1
=1-2) > =071821164 (4.50)
n=1 "N

The series converges, sineg grows as:?, according to the semiclassical estimate (B.21).
The number given in equation (4.50), as well as all the subsequent ones, has been obtained
by means of the partial-wave expansion described in appendix A. This number gives an
idea of the accuracy of this approach. The most significant numerical results are listed in
table 2, together with their counterparts in the case of isotropic scattering.

Second, the determination af(w) goes as follows. We recall that this quantity is
related tov(x) by equation (4.22). Equations (4.46), (4.49) yield

/00 v1(o, x)v(x)V(x)dx = 2P (o). (4.51)
0

The smalle expansion (4.32) of4 (o, x), together with (4.26), allows us to recover the
sum rules (2.38), (2.42) in the following form

/00 v(x)V(x)dx =2 /‘00 v(x) tanhxV (x) dx = 210. (4.52)
0 0

On the other hand, the semiclassical estimates (B.18), (B.20)(6f x) and P (o) for
large values ofr = K? imply

/ ” v(x) Ai(K%3x)x dx ~ (6/m)Y?K >3 (K > 1). (4.53)
0

This estimate yields, by means of (B.25) for= 2, the smallx behaviour ofv(x), i.e.
v(x) ~ 6(2x/m)Y? (x < 1). (4.54)

We thus obtain the following universal scaling behaviour of théunction in the case
of very anisotropic scattering

() ~ 6(2/m)2u%? (n<1). (4.55)

This novel result is in contrast with the linear behaviou(i) ~ 1+/3 observed for isotropic
scattering. The law (4.55) also confirms the hypothesis made in the beginning of this section,
namely thatri(u) vanishes faster than linearly ji.
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Figure 2. Plot of exact expressions
for t1(n) in the absence of internal
reflections. Broken curve: isotropic
scattering, after [15]. Full curve: very
anisotropic scattering (this work).

Finally, we can extract the full functions(x) and t;(u) from (4.51) by means of the
inversion formula (4.38), (4.39). We obtain

v(x) = 3(19 + tanhx) + 2 Z P(on) v1(0y,, X) (4.56)
n>1 n
ie.
al) _ 3o+ p1) + 22 Plon) vi(o,, argtanhw). (4.57)
n>1 n

The semiclassical analysis of appendix B implies that the contribution ofnthe
mode to the results (4.56), (4.57) falls off exponentially withfor x > 0, according
to expK,(I — I(x))]. This exponential convergence disappearsxas> 0, where
equations (4.54), (4.55) apply. The explicit terms in front of the sums in equations (4.56),
(4.57), corresponding to the contribution of the zero mode= 0), have been anticipated
from results to be derived in section 4.4.

Figure 2 shows a plot of the function(u), for both isotropic scattering [15] and very
anisotropic scattering (equation (4.57)). The maximal vaiy€d) for both cases are given
in table 2. The difference between both limiting cases is remarkably small.

4.4. Exact treatment in the absence of internal reflections: the inhomogeneous case

In this section we derive analytical expressions in the regime of very anisotropic scattering
of the special solutiom™s(z, u, ), with its by-product the bistatic coefficiem(i,, ).

In analogy with equation (4.14), we define the Laplace transform of the source function
as follows:

255, 1y fa) = / dr C(r, —, p)€®  (Res < 0), (4.58)
0

The Schwarzschild—Milne equation (2.26), (2.28) can be recast as

Maplo(_—sp; Ha) L 5O [gs(ls;rug:a)} (“1<pu<0)
gs(s, i, o) = (sau« ) — ot 1) (4.59)
D(O} [gS s My 1:_ SMJ/ s Ma :| 0 < <1
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since we havegs(—1/u, u, nwa) = v(uy) for 0 < u < 1, as a consequence of
equation (2.33).

In analogy with section 4.3, we expand equation (4.59), using equations (4.10), (4.12).
We use the rescaled varialateof equation (4.16), and we introduce a new unknown function
hs(o, 1, ua), defined as follows

2t (1 + sphs(o, i1, o) (=1<pn<0
gs(s, [, ta) = . (4.60)
2t (L + su)hs(o, i1, pa) + ¥ (1, ta) O<up<l.
We assume that(u,, u,) vanishes faster than linearly as or u;, — 0. Using the change
of variable (4.19), we are again left with an inhomogeneous @&lthger equation, namely
_2/'La8(x +xa) (x < O)

he(o,x,x,) — o V(x)hs(o, x,x4) = [ BV (Op (. ) o > 0) (4.61)

where we have set
Y (s ) = Uphap (X, Xq) (u = tanhx > 0, u, = tanhx, > 0). (4.62)

Now, in order to deal with the problem of the zero modes of the &itihger
equation (4.23), we introduce a continualdeformation parametekx > 0 as follows. We
consider the deformed Sdidinger equation

u' (o, x) — (6 V(x) + k2W(x))u(o, x) =0 (4.63)
with
W(x) = (1 — tantf x)2. (4.64)
The eigenvalues with label # 0 acquire a regular-dependence of the form
o (1€) = =0 (i) = 0, + O(k?) (4.65)

as well as the associated eigenfunction&c, o, («), x), whereas the double degeneracy of
the zero modey = O is lifted into the following two exact eigenvalues and eigenfunctions
of (4.63):

o1o(K) = +2¢ v1(k, ox0(k), x) = exp(dk (1 — tanhx)) = exp(d« (1 — w)) (4.66)

with squared norms

o s
Nio(k) = :l:ei— (sthc — cosh 2<). (4.67)
K 2«
The introduction of labelst0 is consistent with setting = 0 in formulae such as (4.36)
or (4.65), rather than with the standard arithmetics of integers!

For any non-zera, the set of eigenfunctionf; (, o, (x), x)}, where the labek runs
over the non-zero algebraic integéns+ 0) plus both valuea = +0, now spans the whole
space of bounded functions(x) on the real line. The difficulty of the constraint (4.37),
due to the vanishing norm of the zero modecat 0, is thus cured in a natural way.

The mixed WronskianG(x, o) = W{uy, v1} can still be factorized over its zeros, in
analogy with equation (4.40), namely

Gk,0)=G(k,0R(k,0)R(k, —0) (4.68)
with

R(K,G):l_[(l—i— “ ) (4.69)

”20 Un (K)
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The prefactorG (k, 0) of (4.68) is a non-trivial function ok. Indeed this quantity can
be viewed as the functional determinant of the 8dimger equation (4.63) wite = 0,
namely

u” (o, x) — kK2W(x)u(o, x) = 0. (4.70)

Equation (4.70) is equivalent to the spheroidal equation studied by Meixner and
Schafke [35]. Some properties of this equation have been studied in detail [36], in an
investigation of nematic phases of semiflexible polymer chains. The occurrence of (4.70)
in that context is related to the Kratky—Porod description of persistent chains, mentioned in
section 4.2.
Equation (4.70) has a discrete spectrum of imaginary eigenvalues of thecferntig,

(n > 1), as shown by the semiclassical analysis of appendix B. On the other hand, the
regularity of G(k, o) atx = 0 implies the small behaviourG (x, 0) ~ 4«?/3, hence

2 2
G(k,0) = 4% I1 <1+ ;) 4.71)

n=1
The solution of thec-dependent deformed inhomogeneous 8dimger equation (4.61)
then follows the lines of section 4.3. The particular values —x, < 0 andx = 0 define
three sectors, in which we look for a solution of the following form
as(k, o, x)ui(k, o, x) (x < —x4)
hs(k,0,x,x4) = { bs(k, 0, xa)ui(k, 0, x) + cs(k, 0, Xa)uz(k, o, x) (—xs <x <0)

ds(k,0,x,x)v1(k, 0,x) +es(k, 0, x, x,)va(k,0,x) (x > 0).

(4.72)
The constantswhich enter the last of these expressions obey the conditions
ds(k, 0, x, x)v1(k, 0, %) + €(k, 0, x, x,)V2(k, 0,x) =0 4.73)
ds(k, 0, x, x,)V1(k, 0, %) + €5(k, 0, X, X,)V5(k, 0, X) = 1V (x)p(k, X, Xg)
hence
0o
ds(k,0,x,x,) =ds(k, 0,00, x,) +Ma/ va(k, 0, Y)p(k, y, xa)V (y) dy
N x (4.74)
esti, 0%, 50) = s [ 13069000k, 3, 300V () .
On the other hand, the matching of the solution (4.72) at —x, yields
bs(k, 0,x,) = as(k, 0, Xs) + 21quz(k, 0, Xq) (4.75)
cs(k, 0, xq) = —2pqu1(k, 0, Xg)
whereas its matching at= 0 leads to
ds(k,0,0,x,) = F(k, —0)bs(k,0,x,) — H(k,0)cs(k, 0, x4) (4.76)
—es(k,0,0,x,) = G(k,0)bs(k,0,x,) — F(k,0)cs(k, 0, x,)
with the notations (4.29). We are thus left with
G(k,0)as(k, 0, x,) = —2uqvi(k, 0, —x,) —es(k, 0,0, x,). 4.77)

We can now follow the approach used on equation (4.46). Sipee o, x,,) is holomorphic
in the half-plane Re < 0, the zeros—o,(x) for n > 0 of G(x, o) cannot be poles of
as(x, o, x,). Hence they are zeros of the right-hand side of (4.77).
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We are therefore left with the problem of findiag(«, o, 0, x,), an entire function o#,
from the knowledge of its values on the sequence of paints —o,, (k) (n > 0), together
with a natural assumption of minimal growth at infinity compatible with these data. This
is a generalization to an entire function of the problem of finding a polynofia) with
minimal degree, knowing its values At points, namelyQ(z,) = @, for 1 <n < N. Itis
useful to view thez,’s as the zeros of the normalized polynomial

PRy = [] @—z. (4.78)

1<n<N

The solution Q(z) with minimal degree (genericalliy — 1) is given by the following
Lagrange interpolation formuta

=Y o [ -ty & (4.79)

— / )
1<n<N 1<m#n<N Zn Zm 1<n<N (Z Z")P (Z”)

Extending (4.79) to the present case of an infinite sequence of data for an unknown
entire function, we obtain

v1(K, =0, (K), —X4)

(0 + 0, (k))(dR/do) (k, —0, (k) (4.80)

—es(ic,0,0.%2) = 2114 R(k, 0) )

n=0

or equivalently, using a generalization of the identity (C.6)xtg4 0, together with the
definition (4.68),

R(k, 0, (k))v1(k, 0,(K), Xa)
- ,0,0,x,) = —21,G (k, O)R(k, . 4.81
es(k,0,0,x,) 1aG (x, O)R (k 0)’;0 (o + 0. ()N, () (4.81)

Finally, we can derive an explicit expression fotx, x, x,), by means of an inversion
formula analogous to equations (4.38), (4.39), namely

_ R (¢, 0,0 (k) R (i, 0 (K)) 01k, 0 (1), X) w10, 03 (K), %)
;O(stvxa) - 2G(K’ O)m;() Um(K)+Gn(K) Nm(K) Nn(K)
_ Z v1(k, 0y, (), X)V1(K, 04 (K), —Xa) + V1(K, 0, (K), Xg)V1(K, 05 (K), —X)
AS) '

n=>0

(4.82)

This central result is manifestly symmetric under the exchangeasfdx,, as it should be.
This symmetry property is a valuable check of the whole approach, since both arguments
andx, have played uneven roles throughout the derivation.

We are now able to take the physieal— 0 limit of the above results. In this regime
equation (4.81) can be recast as

o GnP(Gn)vl(am xa)
—es(0,0,x,) = 2MuP(CT)<1 —3 Z (o + 0N, ) (4.83)

n=>1

First, we are now able to complete the proof of the anticipated result (4.56), (4.57), by
inserting (4.83) into (4.77), expanding the latter equationkfes 0 to the first non-trivial
order asc — 0, and comparing the result with the estimate

as(o, x,) ~ —% (c — 0). (4.84)
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Second, the smali- expansion of (4.83) allows us to recover the sum rules (2.37), (2.41)
in the following form:

/oop(x,xa)V(x) dx =2 /Oop(x,xa) tanhxV (x) dx = 2v(x,)/3 — 2tanhx,.
0 0

(4.85)

On the other hand, for large valuescof= K2, we can use the semiclassical estimates (B.18),
(B.20), (B.22), settingr, = k2, in order to transform equations (4.74), (4.83) into
2/3

) o) AI(K?3 ~ (2 K1/3/OO
/(; p(x, xz) Ai( x)xdx ~ (2/7) ke

This estimate shows thatx,p(x, x,) is @ homogeneous function of its arguments with
degree zero, when both of them are small, ke,p(x, x,) = g(x/x,). The rescaling
of (4.86) according to = K%3x = k%3x, then yields, by means of a mere identification
of both integrands, using (B.25), the expressian) = (3/7)z%?/(z° + 1), implying the
following scaling behaviour

3(xaxp)?

Ai (k?3x,) dk. (4.86)

a» Xp) N — asXp K1 4.87
P (Xas Xp) (31D (Xa, xp K 1) (4.87)
or equivalently
3(thapn)¥?
y(:u“av Mb) ~ & (Mas 1222 < 1) (488)

(U + ud)
This novel result is in contrast with the rational behaviguye,, uy) ~ wais/ (e + p)
in the case of isotropic scattering. The law (4.88) confirms the hypothesis made at the
beginning of this section, namely thatw,, 1) vanishes faster than linearly in either of its
arguments. It is also worth noticing that the scaling form (4.88) of the bistatic coefficient
saturates the sum rule (2.37).

The full expression of the bistatic coefficientu,, u,) is obtained by taking the — 0
limit of equation (4.82), using the definition (4.62). The modes: = 0 yield divergent
contributions ax — 0, which cancel out as they should, as well as finite parts, so that we
are left with the result

(Ma» tp) 3 P(o,)
VRO 3o+ (o 1) #2307 [0a(@. %) + v3(@. 1))
I’La/"Lb 2 n}l n
1
=Y = [02(0n, X)v2(0n, =) + V1(0n, —X)V1(0n, X)]
n>1 N"
2 omon  P(oy) P(o,)
PN ms Xa n» 4.89
3,2 ontor Nu N, V1(Om, Xa)V1(0%, Xp) ( )

with u, = tanhx,, u, = tanhx,.

The maximal value of the bistatic coefficient, which yields an absolute prediction for the
diffuse reflected intensity in the normal direction, read4, 1) = 4.889 703. This number
is some 15% above the corresponding one in the case of isotropic scattering (see table 2).

4.5. Extinction lengths of azimuthal excitations

Up to this point, we have mostly investigated quantities with cylindrical symmetry
around the normal to the slab, pertaining thus to #he= 0O sector of the azimuthal
decomposition (2.8).



4946 E Amic et al

We now want to consider briefly the other values of the azimuthal integen the
regime of very anisotropic scattering. As already mentioned in section 2, all the sectors
contribute, for example, to the reflected intensity, except if the incident beam is normal to
the sample, or, more generally, has itself cylindrical symmetry. The situation is different in
transmission through thick slabs, to which only the sestoe O contributes. The reason
for this is that the intensity in the other sectors is exponentially damped inside the sample,
namely

10 ~ exp(—z/L&W) (4.90)

where L% is the extinction length of the azimuthal excitations in the seetor

It is the purpose of this section to determine these lengths in the limit of very anisotropic
scattering. The Legendre operator in the sector defined by the azimuthal intégeiven
by equation (4.11). As a consequence, and along the lines of sections 4.3 and 4.4, we are
led to study the Sclkidinger equation

u' (o, x) — (m?>+ o V(x))u(o, x) = 0. (4.91)

The corresponding extinction length is given by

Ley = (4.92)

Whereoé’”) is the smallest positive eigenvalue of equation (4.91). This is indeed the location
of the first singularity of the Laplace transform of the intensity.

For large values of the azimuthal integet, we can use the semiclassical
analysis developed in appendix B. The Sommerfeld quantization formula associated with
equation (4.91) reads

P My m m2 1/2
/x, (—oV(x) —m?)?dx = fu (o =2 d- MZ)Z) du ~ (n +1/2)7.

(4.93)

The smallest eigenvalu@é’”) corresponds to setting = 0 in the above formula. In first

approximation we express that the argument of the square-root insigeititegral in (4.93)

has zero as its maximal value, so that = p,. We thus obtaimé’") ~ 3/3m?/2. In
second approximation we expand the integrand around its maximum, which takes place for
w ~ +/3/3. We obtain after some algebra the following next-to-leading order estimate

oy ~ (3V3/2)(m? + mV/2) (4.94)

hence
4£*
L~ =
3V3(m2 + m+/2)

This semiclassical estimate gives accurate numbers of the whole spectrum of extinction
lengths, down to the largest on&ly. Indeed equation (4.95) yieldsty ~ 0.318 86¥*,
whereas the exact numerical value reads = 0.282 916 3*.

For a large but finite anisotropy, the Iengthgft) follow the universal law (4.95) only
form < m* ~ /¥ ~ 1/Oms For larger values of the azimuthal number, lttét) become
non-universal numbers of ordér This crossover is expected on physical grounds. Indeed
large azimuthal numbera >> m* correspond to an angular resoluti®é® <« Ons, SO that
the details of the cross section matter in this regime.

(m > 1). (4.95)
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5. Discussion

In this paper we have considered several aspects of multiple anisotropic scattering of scalar
waves. We have considered the geometry of an optically thick slab, of thickngsg*.
Our main goal has been to investigate in a quantitative way the effects of the anisotropy of
the scattering cross section, and of the internal reflections at the boundaries of the sample,
due to an optical index mismatch.

The general results derived in section 2 show that, in first approximation, quantities
only depend on the anisotropy through the transport mean free¢pathhis is especially
the case for the angle-resolved transmission through a thick slab (2.47), for the thickness
of a skin layer,zo = 70¢*, and for the width (2.68) of the enhanced backscattering
cone. The present work thus confirms on a firm basis that the scaling behaviour of these
guantities is qualitatively explained within the diffusion approximation, which amounts to
only considering the long-distance diffusive character of the propagation of radiation in
a turbid medium. The scaling law in/&* of the width of the cone was derived long
ago within the diffusion approximation [31, 32]. The results of section 2.7 concerning the
dependence of the extinction length with respecptanda can be directly compared with
the prediction of the diffusion approximation [12]. Within this framework, all extinction
effects, provided they are small enough, can be coded in a single parameter, namely the
mass.M such that

M2=q2+i9+% (5.1)
abs
whereq is the transverse wavevectdrays is the absorption length, arfd = (w — ')/ Dphys
represents the properly dimensioned contribution of a small frequency shift between the
advanced and the retarded amplitude propagators which build wutiffbson The inverse
extinction length is then equal to the real part of the complex massOur results fully
agree with equation (5.1), withM ~ so/¢, ¢ = Q/¢, and Laps as in equation (2.71).

We then investigated in detail to what extent observable quantities are universally
described by their explicit dependence &nrecalled above, and to what extent they still
depend on details of the scattering cross section mechanism. As recalled in the introduction,
this question is beyond the scope of the diffusion approximation, and requires a careful
treatment using the radiative transfer theory, at least in the regime.,. For the diffuse
reflected or transmitted intensity, and for the width of the enhanced backscattering cone,
the detailed structure of the scattering mechanism only contributes a small effect, entirely
contained in prefactors of the laws mentioned above, such as the constamthe functions
t1(w) andy (u, u).

Two regimes of interest allow for more quantitative results.

(i) The regime of a large index mismatch, where the boundaries of the sample almost act
as perfect mirrors, is considered in section 3. Our results (3.9), (3.12) are identical to
those derived in [15], in the case of isotropic scattering. Therefore the quantities we
have considered do not depeaidhll on the scattering cross section in this regime. This
can be understood as follows. Since the thickngss: 4¢*/(37) of a skin layer is
very large, the radiation undergoes many scattering events near the boundaries before it
leaves the medium, so that the details of every single scattering event are washed out.

(ii) In the absence of internal reflections, we have considered in detail the regime of very
anisotropic scattering. In section 4 we have presented an exact analytical treatment of
the radiative transfer problem in this regime. We have obtained the results (4.50), (4.57),
(4.89) which determine the diffuse reflected and transmitted light for a thick slab. These
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results are given in terms of the eigenvalues and eigenfunctions of the one-dimensional
Schiddinger equations, which are accessible both numerically, via the partial-wave
expansion of appendix A, and analytically in the limit of large quantum numbers, via the
semiclassical analysis of appendix B. lgipriori possible to extend this exact treatment

to the scaling behaviour of the shape of the enhanced backscattering cone. The general
structure of the equations to be solved shows that we hav®) ~ F(Qt*), in a

whole scaling region defined b « 1 andt* > 1. By inserting the numerical
values of table 2 into the expansion (2.66), we get at dn@® = y (1, 1) = 4.889703

and F'(0) = —11(1)?/3 = —8.80166. The exact determination of the full scaling
function F would amount to solving a self-consistent inhomogeneous equation of the
type (4.61), albeit with the full Legendre operator instead of one-dimensional second-
order derivative. The wings of the cone, starting around value@ aff order unity,

will depend on the details of the scattering cross section, even in the regime of very
anisotropic scattering.

Our exact treatment of the radiative transfer problem in the very anisotropic regime,
based on the expansion (4.8), is expected to be valid in the re@ime<« 1 of a broad
universality classof phase functions. Although this universality class cannot be easily
characterized, we can assert that it contains at least the phase functions scaling as

p(©) ~ O(O/Oms) (5.2)

such that the scaling functio® has a finite second moment. This restrictive definition
does not encompasa priori the Lorentzian-squared phase function (4.4), which has a
logarithmically divergent second moment, as already mentioned in section 4.1. The same
remark holds for the so-called Henyey—Greenstein phase function
1—g?

(1—2gcos® + g2)3/2
often used in numerical investigations [3,17], for which the second-moment integral is
linearly divergent.

The discussion of the dependence of quantities on the details of the scattering mechanism
is summarized in table 2, where we compare the numerical values of the dimensionless
absolute prefactors of five characteristic quantities, for isotropic scattering and for very
anisotropic scattering. The relative differences, shown in the last row, are very small in
most cases. Some other quantities, such as the shape of the enhanced backscattering cone, or
the spectrum of extinction lengths of the azimuthal excitations, exhibit universal behaviour
in the very anisotropic regime only in a limited range, corresponding to a low enough
angular resolutions® > O, SO that the details of the scattering cross section do not
matter.

Finally, we can compare our universal results in the very anisotropic scattering regime,
for some of the quantities listed in table 2, with the outcomes of numerical approaches. Van
de Hulst [3,17] has investigated in a systematic way the dependence of various quantities
on anisotropy, for several commonly used phenomenological forms of the phase function,
including especially the Henyey—Greenstein phase function (5.3). The data on the skin-
layer thickness reported in [3] show that, as a function of anisotrgpyaries from 0.7104
(isotropic scattering) to 0.7150 (moderate anisotropy), passing a minimum of 0.7092 (weak
anisotropy). The trend shown by these data suggests that our universal value 0.718 211 is
actually an absolute upper bound fer Numerical data concerning (1) is also available.
Van de Hulst [17] has extrapolated two series of data, concerning the Henyey—Greenstein
phase function (5.3), which admit a common limit for very anisotropic scattégng 1).

p(©) = (5.3)
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According to the analysis of section 4, this limit reads in our langua@B /4 = 1.284 645,
whereas [17] gives the two slightly different estimate&7B+0.002 and 1274+0.007. The
agreement is satisfactory, although it cannot be entirely excluded that the observed 0.8%
relative difference can be a small but genuine non-universality effect. Indeed, as mentioned
above, the Henyey—Greenstein phase function (5.3) might not belong to the universality
class where our approach holds true. The same remark applies to a less complete set of
data [17] concerning the intensity(1, 1) of reflected light at normal incidence.
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Appendix A. Partial-wave expansions

In this appendix we describe a numerical algorithm based on a partial-wave expansion, that
we have used to determine the eigenvalues and eigenfunctions of tliBger equations
involved in section 4.

We first consider the Sctdinger equation (4.23). Going back to thevariable, this
equation reads

(AQ —opyvi(o, p) =0 (A1)

whereA© is the Legendre operator in theindependent sector, defined in equation (4.11).
It is natural to expand the functiom (o, 1) in the Legendre polynomials

vi(o, 1) = Y au(0) Po(). (A2)

>0
Indeed these polynomials are eigenfunctions\dP, namely
AOP = 2t + )P, (A.3)
and the product P, (1) has the following expression
20+ DuPe(pn) = (€ + 1) Peya(p) + LP—a(p) (A.4)

so that (A.1) amounts to the following three-term recursion relation

£+
20+ 3
Wheno is one of the eigenvalues,, (A.5) has an acceptable soluti¢wy (o)}, decaying

to zero for large¢. The quantities needed in section 4 can then be evaluated as follows.
The normalization condition (4.25) becomes

Zaz(on) =1 (A.6)

€20

1 l
L+ Das+o ( Qag41 + T 161(1) =0. (A.5)
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since P,(1) = 1. The squared norm&, of the eigenfunctions read

£+1
N, = 4; mal(an)aéJrl(o'n) (A7)

as a consequence of the normalization of the Legendre polynomials

! du Ok,
P Py = A.
/_1 5 k() P (i) 2 +1 (A.8)

Finally, the non-trivial mixed Wronskiang(+o,) read

F(=0,) =

=vi(on, p=—1) =) (=D ar(on) (A.9)

F(Un) [20

since P;(—1) = (—1)*.
We now consider the-dependent Scbdinger equation (4.64), namely
(A —op + 1*(u? = D)vilk, o, 1) = 0. (A.10)
We again expand the wavefunction over the Legendre polynomials

vile, 0, ) = ) ae(ie, o) Po(p). (A.11)
€0
By iterating (A.4) twice, we obtain the following five-term recursion
041 ¢ 0 —1)
L +1 — — g | -k ————ay_
(+Da;+o <2€+361£+1+ o0 1™ 1) K ((26—1)(2£—3)a€ 2
21— —¢?) L+ +2 _0
-1t +3" T 2+3@e+5%2) T
Equations (A.6), (A.7), (A.9) still hold true.
We finally consider the wave equation

(A —opvi(o, u,9) =0 (A.13)

(A.12)

whereA is the full Legendre operator, defined in (4.9). Since the potential does not involve
the azimuthal angle explicitly, we look for a solutiorv; proportional to &¢, with m > 0
being an integer. It is now natural to expand the functig(, u, ¢) in the Legendre
functions P, (1), namely

Ul(av M, (P) = eim(p Z ag.m (G)PZ,;11 (/-'L) (A14)

{>m

These functions obey

AP (1)) = —€(€ + 1) Py ()€™ (A.15)
and the product P, (1) has the following expression

(26 + DpuPp () = (L +1—m) Py m(in) + (€ +m)Pr_g (1) (A.16)

so that (A.13) amounts to the three-term recursion relation

20+ 3 + 2¢—1
The recursion equations (A.5), (A.12), (A.17) are easily implemented numerically.

L+m+1 L—m
L+ NVay, +o0 <ag+1,m a5_17m> =0. (A.17)
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Appendix B. Semiclassical analysis

The outcomes of the semiclassical analysis presented in this appendix are used at various
places in section 4. We first consider the Sxtinger equation (4.23). For large values of
the complex parameter, we look for rapidly varying solutions of the form

u~ o(x)"Y? exp/x ®(y) dy (B.1)
with
d(x)2 =0V (x). (B.2)

This approach is analogous to the WKB approximation in quantum mechanics, since the
conditiono > 1 is equivalent td: being small.

Because the potentid (x) is odd, we can restrict the analysis to the domairRe 0.
We introduce the notation

K =4/o. (B.3)
Equation (B.2) has real solutions for> 0. We set
p(x) =y Vx) (x>0 (B.4)
so that® (x) = Kp(x). Equation (B.1) thus yields the basis of functions
with
1(x) =/ p(y)dy (x > 0). (B.6)

The above functiong.(x) are exponentially blowing up or decaying. The domains 0
ando > 0 (and similarlyx < 0 ando < 0) are said to belassically forbidden
On the other hand, fat < 0, equation (B.2) has imaginary solutions. We set
qx) =v=V(x) (x <0 (B.7)
so that® (x) = iK¢(x). Equation (B.1) thus yields the basis of functions

1 .
with
I(x) =/ q(y)dy (x <0). (B.9)

The above functions..(x) are oscillating and bounded, up to the prefactogin) /2.
The domainst < 0 ando > 0 (and similarlyx > 0 ando < 0) are said to belassically
allowed

The difficulty of the semiclassical analysis comes from the existence of threimg
points namelyx = 0 andx — +oo, where the momentum variab}gx) or g(x) vanishes.
The estimates (B.5), (B.8) lose their meaning in the vicinity of the turning points, where a
more careful analysis is required, to be presented now.

We first investigate the basis of functiong,, u,} for x < 0. Forx — —oo and
K — o0, the Schiddinger equation (4.23) assumes the simpler form

u’ + (2KeH)u = 0. (B.10)
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A basis of solutions to this equation is given by the Bessel functigtie and Ny(z), with
z = 2Ke' being a scaling variable. The boundary conditions (4.24) have to match the
known smallz behaviour of the Bessel functions, hence

uy(x) ~ Jo(2Ke")
ux(x) ~ (m/2)No(2K€") — (InK + yg)Jo(2K€") (x => —00)

where yr denotes Euler's constant. The known latgbehaviour of the Bessel functions
fixes the amplitudes of the integrals in (B.8) for andu,, namely

(B.11)

2 1/2
uy(x) ~ (an(x)) CoSKI(x) —m/4)

1/2
U (x) ~ ( ) [(r/2) SiN(KI(x) — 7/4) — (INK + y£) COSK I (x) — 7/8)].

mKq(x)
(B.12)

On the other hand, far — 0 andK — oo, the Schodinger equation (4.23) assumes the
simpler form

u + K%xu=0 (B.13)
which is equivalent to Airy’s equation. A basis of solutions is given by the Airy functions
Ai(z) and Biz), with z = K%3x being again a scaling variable. The known behaviour for
z — —oo of the Airy functions has to match equation (B.12), hence
ug(x) ~ 2Y2K ~3[sin(K I) Ai (K%3x) + cos K I) Bi(K%3x)]
uz(x) ~ 2Y2K "3 /2)[— cos K I) Ai (K?3x) + sin(K I) Bi(K%3x)] (B.14)

—(NK + yp)[sin(KT) Ai(K?3x) + cog K I) Bi(K?3x)]}
for x — 0, with
I—I(O)—/oo ()dx—fld ° 1/2—\/5”3/4)—1198140 (B.15)

T POEE M Ao 2) T 2 rem T '

this definition being consistent with equations (B.6), (B.9).

We now investigate in a similar way the functiofig, vo} for x > 0. Forx — oo
and K — oo, a basis of solutions is given by the modified Bessel functifyis) and
Ko(z), with z = 2Ke*. The boundary conditions (4.25) have to match the known small-
behaviour of the Bessel functions, hence

vy ~ Ih(2Ke™)
vo &~ Ko(2Ke™) + (InK + yp)lp(2Ke™) (x = 00).

(B.16)

The known large= behaviour of the Bessel functions only fixes the amplitude of the solution
u, of (B.5) for v; and vy, namely

1/2
vi(x) & (W) ekl (B.17)
v2(x) ~ (INK + ye)vi(x) (x >0).

Finally, the known behaviour of the Airy functions as— oo yields
vi(x) & 2Y2K T3 A (K2 3x)ek!

(B.18)
v2(x) ~ (In K + yg)vi(x) (x = 0).
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The above expressions (B.14), (B.18) of both bases of solutionsa9 andK — oo
allow us to derive the following semiclassical estimates for the elements of the transfer
matrix introduced in equation (4.29)

F(o) ~[sin(KI) — (2/m)(In K + yg) cog K I)]eX!
G(o) ~ —(2/m) cog K I)eX!

H(o)~ (InK + yp)F (o)

F(—0) ~ (INK + y£)G (o) (0 = K? > 00).

The estimate foiG (o) directly yields the following expressions for its factaPs+o),
defined in equation (4.41):

(B.19)

eKl
P(o) ~ (3/71)1/2?

(B.20)
2 cos K1)
K2

P(—0) ~ —2(3/n (0 = K? > 00).
We also obtain from (B.19) an estimate of the eigenvalies= K2, which are the
zeros ofG(o), in the form

Ky~ (n+ 1/2); (n>1). (B.21)

This semiclassical formula gives a very accurate description of the whole spectrum of the
Schibdinger equation (4.23). Indeed the relative error is maximal for the first non-zero
eigenvalue, for which (B.21) predict&; ~ 3.933086, i.e. some 3.2% above the exact
numerical valueK; = 3.811562.

The semiclassical expression of the squared navinsan be evaluated by inserting the

estimates (B.19) into the identity (C.6). We thus obtain
1
N, ~ ———?ki! (n > 1). (B.22)
nkK,

In section 4 we also need the expression of the Mellin transform of the Airy function
Ai(x), namely

m(s) = /ooxf A (x) dx (Res > —1) (B.23)
0

which we have not found in standard handbooks. The Airy equation implies the functional
equation

m(s +3) = (s + (s + 2)m(s) (B.24)
whose correctly normalized solution is
53 T(s)
=33 . B.25
m(s) TG/3) (B.25)

We now consider the deformed Soldinger equation (4.63), where bothand« are
non-zero. It turns out that only the spectrum of that wave equation will be needed. Hence
we can content ourselves with the Sommerfeld quantization formula. A similar treatment
is used in section 4.5 for the full Legendre operator.

The Sommerfeld formula reads

Xy 4 1/2
/ (—oV(x) — k’W(x)Y?dx = [M <01—MM2 — Kz) du~ (n+1/2)x
x_ .

(B.26)
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the integral being extended over the classically allowed domain, where the square root is
real.
The implicit equation (B.26) for the semiclassical estimate of the eigenvatagéc)
can be investigated in several limiting cases of interest. For small valuegtod integrand
can be expanded in a straightforward way. We thus obtain

12 _ T 2%
()Y ~ Kolic) = (1 +1/2) 7 (1+ w127 " ) > 1k <1).

(B.27)
This expression confirms the general result (4.65). On the other hand,=0®, it can be

deduced from equation (B.26) that the spheroidal equation (4.70) has imaginary eigenvalues
of the form« = +i§,, asymptotically given by the semiclassical estimate

Appendix C. Useful identities on the mixed Wronskians

In this appendix, we derive the identity (C.6) used in section 4, and more generally we
give alternative expressions for the derivatives with respect to the spectral variablne
mixed WronskiansF (o), G(o) and H (o), which enter the transfer matrix (4.29).

To do so, we start by considering the derivatives

Uy (0, x) = W @=12 (C.1)

which obey the inhomogeneous Sgtinger equation
Ul(o,x) — o V(x)Uy(o, x) = V(x)uu(o, x) (x=1,2). (C.2)

These equations can be solved explicitly Barying the constantsalong the lines of
sections 4.3 and 4.4. We thus obtain

Ui(o, x) = —ui(o, x)/ u1(o, y)uz(o, y)V(y) dy + uz(o, x)/ u(o, y)V(y) dy
_;O . - (C.3)
Un(o, x) = —u3(0, x) / W30, )V () dy + uz(o, x) / u1(o, Y)uz(o, y)V (y) dy.

By taking thex — oo limit of the above expressions, and using the asymptotic
behaviour (4.30), we get the following expressions

dﬁ:’) = G(0)N22(0) + F(0)N12(0)

dG
(U) = —F(U)Nll(d) — G(U)NlZ(G)

dIEIjC(TU) ©9
do = —F(0)N11(0) — G(0)N12(0)

dF;;O‘) = —F(—0)Ni2(0) — H(o)N11(0)

with the definition

Nyg(o) = /00 Uy (o, x)ug(o, x)V(x) dx (, B=12). (C.5)
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On the spectrum, i.e. fosv = o,, we haveG(o,) = 0, by definition. Furthermore,
equation (4.34) implie¥V11(c,,) = N,/ F?(0,,), hence the identity

dG@)\  Ne oo
( & )g:,,n__F(Gn)_ N, F(—0,) (C.6)

with N,, being the squared norm of the eigenfunctialio,, x), defined in equation (4.35).
The identity (C.6) is very general. It also holds for thedependent Scbdinger
equation (4.63).
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