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Abstract. The multiple scattering of scalar waves in diffusive media is investigated by means
of the radiative transfer equation. This approach, which does not rely on the diffusion
approximation, becomes asymptotically exact in the regime of most interest, where the scattering
mean free path̀ is much larger than the wavelengthλ0. Quantitative predictions are derived in
that regime, concerning various observables pertaining to optically thick slabs, such as the mean
angle-resolved reflected and transmitted intensities, and the width of the enhanced backscattering
cone. Special emphasis is put on the dependence of these quantities on the anisotropy of the
cross section of the individual scatterers, and on the internal reflections due to the optical
index mismatch at the boundaries of the sample. The large index mismatch regime is studied
analytically, for arbitrary anisotropic scattering. The regime of very anisotropic scattering,
where the transport mean free path`∗ is much larger than the scattering mean free path`, is
then investigated in detail. The relevant Schwarzschild–Milne equation is solved exactly in the
absence of internal reflections.

1. Introduction

The theory of multiple light scattering has been a classical subject of interest for one century,
which attracted the attention of many scientists, including Lord Rayleigh, Schwarzschild
and Chandrasekhar. Standard books are available, such as those by Chandrasekhar [1],
Ishimaru [2], van de Hulst [3] and Sobolev [4]. The discovery of weak-localization effects,
and chiefly the enhanced backscattering cone [5], yielded a revival of theoretical and
experimental work in the area of multiple scattering in disordered media. Much progress
has been done recently in the analysis of speckle fluctuations [6], in analogy with the
conductance fluctuations observed in mesoscopic electronic systems [7].

Laboratory experiments are often performed either on solid TiO2 (white paint) samples,
or on suspensions of polystyrene spheres or of TiO2 grains in fluids. In most cases, the
wavelengthλ0 of light in the diffusive medium, the scattering mean free path`, and the
thicknessL of the sample obey the inequalitiesλ0 � ` � L. Multiple scattering is also of
interest in biophysics and medical physics, in order to understand the transport of radiation
through human and animal tissues. Besides light, all kinds of classical waves undergo
multiple scattering in media with a high enough level of disorder, i.e. of inhomogeneity.
Well known examples are acoustic and seismic waves. The propagation of electrons in
disordered solids also pertains to this area, since quantum mechanics also basically consists
in wave propagation.
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Multiple scattering of waves in disordered media admits the following three levels of
theoretical description.

(i) The macroscopicapproach consists in an effective diffusion equation, which describes
the transport of the diffuse (incoherent) intensityI (r, t) at point r at time t . This
approximation turns out to be very accurate in the bulk of a turbid medium, and
more generally on length scales much larger than the mean free path`. The diffusion
approximation yields several interesting predictions, among which we mention the 1/L-
decay of the total transmission through an optically thick slab of thicknessL � `, the
decay time of the transient response to an incident light pulse, or the memory of a typical
speckle pattern when the frequency of light is varied. This approximation also allows
for a quantitative prediction of the diffuse image of a small object in transmission [8].

(ii) The mesoscopicapproach, used by astrophysicists throughout the classical era of the
subject, is referred to as radiative transfer theory [1–4]. This theory relies on the radiative
transfer equation, which is a local balance equation, similar to the Boltzmann equation
in kinetic theory, for the diffuse intensityI (r, n, t), with n being the direction of
propagation. This approach leads in a natural way to distinguish between the scattering
mean free path̀ and the transport mean free path`∗, to be defined below. The diffusion
approach (i) is recovered in the limit of length scales much larger than`∗.

(iii) The microscopicapproach consists in expanding the solution of the wave equation
in the disordered medium in the form of a diagrammatic Born series. In the regime
` � λ0 the leading diagrams can be identified, in analogy with, for example, the theory
of disordered superconductors [9]. For the diffuse intensity they are the ladder diagrams,
which are built up by pairing one retarded and one advanced propagator following the
same path through the disordered sample, i.e. the same ordered sequence of scattering
events. This picture agrees with that behind the radiative transfer equation, which is
a classical transport equation for the intensity. The ladder diagrams can be summed
and yield an integral equation of the Bethe–Salpeter type for the diffuse intensity,
which we refer to as the Schwarzschild–Milne equation. The radiative transfer approach
(ii) is thus recovered in the weak-disorder(` � λ0) regime. A further step consists
in including some of the subleading diagrams, of relative orderλ0/` � 1, which
account for interference effects between diffusive paths. Among those contributions,
the class of maximally crossed diagrams is of particular interest, since it describes the
aforementioned enhanced backscattering phenomenon [10, 11].

To summarize this discussion, each of the descriptions mentioned above represents a
qualitative improvement with respect to the previous ones (see e.g. [12]). In order to derive
quantitative estimates of observables in the regime` � λ0 of interest, it is sufficient to
consider radiative transfer theory. The macroscopic approach (i) is clearly insufficient,
since we aim, among other things, at a description of the crossover from free propagation
to diffusive transport which takes place in theskin layersof thickness of order̀ , near the
boundaries of the disordered medium. This phenomenon is, by its very definition, beyond
the scope of the diffusion approach. The radiative transfer approach (ii) leads us to study the
Schwarzschild–Milne equation (2.26), (2.28). This equation has only been solved exactly in
a limited number of cases. Analytical results have been obtained for isotropic scattering of
scalar waves [1, 13–15], and in the case where the scattering cross section depends linearly
on the cosine of the scattering angle [1, 16]. The case of anisotropic scattering has essentially
been investigated by means of general formalism and by numerical methods [2, 3, 17].

For a finite sample, physical observables such as the reflected or transmitted intensity in a
given direction depend on the particular realization of the sample under consideration. Such
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quantities are indeed the results of intricate interference patterns throughout the sample; they
only become self-averaging quantities in the limit of a large enough sample. This definition
can be made precise by means of the dimensionless conductanceg ∼ N `/L, related to
the numberN ∼ A/λ2

0 of open channels, whereA is the transverse area of the sample.
The self-averaging regime corresponds tog � 1. The whole distribution of observables is
therefore of interest, as long asg is not very large. We mention a recent experiment [18],
where the third cumulant of the total transmission, an effect of relative order 1/g2, has
been measured and compared to theoretical predictions. This third cumulant is of the same
order of magnitude as the universal conductance fluctuations, either in electronic [7] or in
optical [6] systems. In fact the full distribution of the total transmission through an optically
thick slab has been derived recently [19]. In the following we focus our attention on the
mean values of physical quantities.

The vector character of electromagnetic waves also introduces its own intricacy. In
general four coupled integral equations have to be solved, which are associated with the
Stokes parameters of the diffuse light in the medium. These equations have been solved
exactly in the case of Rayleigh scattering, i.e. the regime where the size of the scatterers is
much smaller than the wavelength [1, 20]. Among specific features pertaining to diffusive
light propagation, let us mention the dependence of the backscattering enhancement factor on
the polarization states of the incoming and outgoing radiation [21–23], or the progressive
destruction of the backscattering peak induced by a magnetic field, due to the Faraday
rotation in a magneto-optically active material [24–27].

Furthermore, in practical situations the optical indexn0 of the scattering medium is often
different from the indexn1 of the surrounding medium. This index mismatch, measured
by the ratiom = n0/n1, causes reflections at the interfaces. In the regime of a large index
mismatch (m � 1 or m � 1), the transmission across the interfaces is very small, so
that the light is reinjected many times in the diffusive medium. As a consequence, the
skin layers become very thick in this regime. More generally, the diffusion approximation
works better and better as the index mismatch gets large. Improvements of the diffusion
equation have been proposed [28, 29], which take internal reflections into account. It is
in fact possible to derive analytical expressions for the reflected and transmitted intensities
and other observables in this regime. This asymptotic analysis has been performed in [15]
for isotropic scattering. It will be generalized hereafter to the case of general anisotropic
scattering. This approach provides accurate results, even for a moderate index mismatchm.

More generally, one of the main goals of this paper is to quantify the dependence
of quantities on the anisotropy of the scattering mechanism. It has long been known from
radiative transfer theory that two length scales are involved in the case of general anisotropic
scattering: the scattering mean free path`, namely the effective distance between two
successive scattering events, and the transport mean free path`∗, namely the distance over
which radiation loses memory of its direction. Both mean free paths, to be defined more
precisely in section 2, depend on details of the scattering mechanism, such as the shape,
size and dielectric constant of the scatterers. In the regime of very anisotropic scattering,
we have`∗ � `. The ratioτ ∗ = `∗/` � 1 will be referred to as theanisotropy parameter.
In some experimental situationsτ ∗ can be of order ten or larger [30]. The regime of most
interest is thenλ0 � ` � `∗ � L.

The setup of this paper is as follows. In section 2 we present some general formalism
on radiative transfer theory and we derive the associated Schwarzschild–Milne equation.
We show how solutions of the latter equation yield predictions for quantities of interest,
such as the diffuse reflected and transmitted angle-resolved intensities. The determination
of the shape of the enhanced backscattering cone is also addressed. Section 3 is devoted to
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the regime of a large index mismatch, for general anisotropy. In section 4 we derive
a complete analytical solution of the radiative transfer problem in the regime of very
anisotropic scattering(τ ∗ � 1), in the absence of internal reflections. The paper closes
up with a discussion in section 5.

2. Generalities on anisotropic multiple scattering

Throughout the following we restrict the analysis to multiple scattering of scalar waves by
scatterers located at uncorrelated random positions, in the regime where the scattering mean
free path` is much larger than the wavelengthλ0 of radiation in the medium. We have
summarized some useful notations and definitions in table 1.

Table 1. Conventions and notations for kinematic and other useful quantities.

Outside medium Inside medium

Optical index n1 n0 = mn1

Wavenumber k1 = n1ω/c = 2π/λ1 k0 = n0ω/c = mk1 = 2π/λ0

Incidence angle θ θ ′

Parallel wavevector
p = k1 cosθ

= k0

√
µ2 − 1 + 1/m2

P = k0 cosθ ′

= k0µ

Total reflection m < 1 and sinθ > m m > 1 and sinθ ′ > 1/m

condition (i.e.P imaginary) (i.e.p imaginary)

Transverse |q| = q = k1 sinθ = k0 sinθ ′ = k0

√
1 − µ2

wavevector

Azimuthal angle ϕ

Reflection
and
transmission
coefficients

partial
reflection

:


R =

(
P − p

P + p

)2

=
(

µ −
√

µ2 − 1 + 1/m2

µ +
√

µ2 − 1 + 1/m2

)2

T = 4Pp

(P + p)2
= 4µ

√
µ2 − 1 + 1/m2

(µ +
√

µ2 − 1 + 1/m2)2

total
reflection

:

{
R = 1

T = 0

As stated in section 1, we put special emphasis on the dependence of physical quantities
on the anisotropy of the scattering mechanism. After averaging over the random orientations
of the individual scatterers, the differential scattering cross section of arbitrary anisotropic
scatterers can be written in the following form [1, 2]

dσ(n, n′) = (u/4π)2p(2) d�′. (2.1)

In this formulau is the scattering length,n and n′ are unit vectors in the incident and
outgoing directions,2 is the angle between these directions, so that cos2 = n · n′, and
d�′ is an element of solid angle around the directionn′. We assume that there is neither
absorption nor inelastic scattering. In other words the albedo is unity (the situation of non-
conservative scattering will only be considered in section 2.7). The phase functionp(2)
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then obeys the normalization condition∫
d�′

4π
p(2) =

∫ 1

−1

d cos2

2
p(2) = 1. (2.2)

The total cross section readsσ = u2/(4π), and thescattering mean free path̀ is given by

` = 1

nσ
= 4π

nu2
(2.3)

where the densityn of scatterers is assumed to be small, in such a way that we have` � λ0.
In the particular case of isotropic scattering, the phase functionp(2) = 1 is a constant.

In the general case of anisotropic scattering, the phase functionp(2) is a non-trivial function
of the scattering angle. As recalled in section 1, one has to distinguish between the scattering
mean free path̀, which is the typical distance between two successive scattering events, and
the transport mean free path̀∗, which represents the distance over which radiation loses
memory of its direction. Both mean free paths are related by the following expression, well
known from kinetic theory,

τ ∗ = `∗

`
= 1

1 − 〈cos2〉 (2.4)

with

〈cos2〉 =
∫ 1

−1

d cos2

2
cos2 p(2). (2.5)

The dimensionless ratioτ ∗ will be referred to as theanisotropy parameter. We usually
haveτ ∗ > 1, i.e. `∗ > `, since the scattering cross section is often peaked in the forward
direction, in a more or less prominent way. The regime ofvery anisotropic scattering,
wherep(2) is strongly peaked around the forward direction, corresponds to`∗ � `. This
regime will be investigated in detail in section 4.

2.1. General formalism

In this section we present some general formalism on anisotropic multiple scattering, thus
extending the treatment of the isotropic case presented in [15]. Some of the results exposed
below are already present in lecture notes by one of us [12].

We begin with a reminder of radiative transfer theory. In the regime` � λ0 under
consideration, in the absence of internal sources of radiation, and in stationary conditions, the
quantity of interest is the specific intensityI (r, n) of radiation at the positionr, propagating
in the directionn. The specific intensity obeys the time-independent radiative transfer
equation, that takes the following local form

`n · ∇I (r, n) = 0(r, n) − I (r, n). (2.6)

The quantity

0(r, n) =
∫

d�′

4π
p(n, n′)I (r, n′) (2.7)

is commonly referred to as the source function. We recall that the phase function
p(n, n′) = p(2) only depends on the scattering angle2.

As recalled in section 1, the radiative transfer equation (2.6) [1–4] can be considered as a
mesoscopic balance equation for the light intensity inside the diffusive medium, somewhat
analogous to the Boltzmann equation in the kinetic theory of gases. It is equivalent to
the Bethe–Salpeter equation, obtained by summing the ladder diagrams of the Born series
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expansion of the intensity Green’s function of the problem. These diagrams are the dominant
ones for` � λ0, i.e. to leading order in the densityn of scatterers.

We consider a sample of diffusive medium in the form of a slab of thicknessL, limited
by the two parallel planesz = 0 andz = L. The mean optical indexn0 of the slab can
be different from the indexn1 of the surrounding medium. The index mismatch, measured
by the ratiom = n0/n1, generates internal reflections at the interfaces. We introduce the
optical depthτ = z/` of a point in the sample, and the optical thicknessb = L/` of the
sample. Finally we use angular coordinates as in table 1:θ is the incidence angle, with the
notationµ = cosθ , while the azimuthal angle is denoted byϕ.

Since the problem has rotational symmetry with respect to thez-axis, normal to the
sample, and translational symmetry in the(x, y)-plane, it is natural to express theϕ-
dependence of the specific intensity and of the source function as Fourier series of the
form

I (r, n) =
∑

−∞<m<+∞
I (m)(τ, µ)eimϕ 0(r, n) =

∑
−∞<m<+∞

0(m)(τ, µ)eimϕ (2.8)

where the integerm is the azimuthal number.
Furthermore, along the lines of [1, 4], for general anisotropic conservative scattering,

we expand the phase function in Legendre polynomials as

p(2) =
∑
`>0

(2` + 1)$`P`(cos2). (2.9)

We have$0 = 1 (see below), while the other coefficients$` are only constrained by the
positivity of the phase function.

In coordinates related to the sample, the phase function then reads

p(n, n′) = p(µ, ϕ, µ′, ϕ′) =
∑

−∞<m<+∞
pm(µ, µ′)eim(ϕ−ϕ′) (2.10)

with

pm(µ, µ′) =
∑
`>|m|

(2` + 1)$`

(` − |m|)!
(` + |m|)! P`,m(µ)P`,m(µ′). (2.11)

The radiative transfer equation (2.6) thus reduces to

µ
d

dτ
I (m)(τ, µ) = 0(m)(τ, µ) − I (m)(τ, µ) (2.12)

or equivalently

µ
d

dτ
[I (m)(τ, µ)eτ/µ] = 0(m)(τ, µ)eτ/µ (2.13)

and the source functions0(m)(τ, µ) are related to the specific intensitiesI (m)(τ, µ) through

0(m)(τ, µ) = D(m)[I (m)(τ, µ)] (2.14)

where we have introduced the integral operators

D(m)[8(µ)] =
∫ 1

−1

dµ′

2
pm(µ, µ′)8(µ′). (2.15)

We mention for further reference that the Legendre functions{P`,m(µ), ` > |m|} form
a complete set of orthogonal eigenfunctions of the integral operatorD(m), with eigenvalues
$`, i.e.

D(m)[P`,m(µ)] = $`P`,m(µ). (2.16)
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Especially form = 0 we haveP`,0(µ) = P`(µ), where the Legendre polynomialsP`(µ)

already appeared in (2.9).
The following Legendre functions will be of special interest hereafter:

P0,0(µ) = P0(µ) = 1 P1,0(µ) = P1(µ) = µ P1,1(µ) =
√

1 − µ2. (2.17)

Indeed the identity (2.16) has the following two special cases of interest.

• The eigenvalue$0 = 1, associated with the constant eigenfunctionP0(µ) = 1 of
D(0), is a consequence of the conservative nature of the scattering mechanism, yielding
diffusive behaviour in the long-distance limit. More explicitly,∫ 1

−1

dµ′

2
p0(µ, µ′) = 1. (2.18)

• The first non-trivial eigenvalue$1 of both operatorsD(0) and D(1) is related to the
anisotropy parameterτ ∗ of equation (2.4). Indeed, sinceP1(µ) = µ we have∫ 1

−1

dµ′

2
p0(µ, µ′)µ′ = $1µ (2.19)

hence

$1 = 〈cos2〉 = 1 − 1

τ ∗ τ ∗ = 1

1 − $1
. (2.20)

We also notice that all the eigenvalues of the operatorsD(m) are trivial in the particular
case of isotropic scattering, since$0 = 1, while $` = 0 for ` > 1.

2.2. Schwarzschild–Milne equation

We now turn to the derivation of the Schwarzschild–Milne equation in the general situation
of anisotropic scattering. This key equation of radiative transfer theory will be the starting
point of the following developments.

It turns out that most observables of interest can be derived by considering quantities
with cylindrical symmetry around thez-axis, namely those corresponding to an azimuthal
numberm = 0. Henceforth we restrict the analysis to this sector, except in section 2.6, and
we drop the superscript (0) for simplicity.

We consider first a half-space geometry(b = ∞). We assume that the limiting plane
τ = 0 of the sample is subjected to a cylindrically symmetric incident beam, characterized
by an angle of incidenceθa, i.e. that the incident intensity does not depend on the
azimuthal angleϕa. This is automatically satisfied at normal incidence(θa = 0). Under
these circumstances, the inward intensity on the limiting planeτ = 0+ contains both the
normalized refracted incident beam, coming in a direction defined byµa, and the intensity
coming from the bulk of the medium, after being reflected once at the interface. Using the
radiative transfer equation (2.12), (2.13) form = 0, we thus get

I (0+, µ, µa) = 2δ(µ − µa) + R(µ)

µ

∫ ∞

0
dτ e−τ/µ0(τ, −µ, µa) (µ > 0) (2.21)

where the Fresnel reflection coefficientR(µ) is given in table 1. The only contribution to
the outward intensity on this plane comes from the light rays which have experienced at
least one scattering event, namely

I (0+, −µ, µa) = 1

µ

∫ ∞

0
dτ e−τ/µ0(τ, −µ, µa) (µ > 0). (2.22)
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The radiative transfer equation (2.12), (2.13), together with the boundary conditions
(2.21), (2.22) atτ = 0+, can then be recast in the integral form

I (τ, µ, µa) = 2δ(µ − µa)e
−τ/µa + (K ∗ 0)(τ, µ, µa). (2.23)

Here and throughout the following, the star denotes the convolution product

(K ∗ 0)(τ, µ, µa) =
∫ ∞

0
dτ ′

∫ 1

−1

dµ′

2
K(τ, µ, τ ′, µ′)0(τ ′, µ′, µa). (2.24)

The kernelK can be split into two components:K = KB + KL. The bulk kernelKB

contains the contributions to the intensity at depthτ arising from the scattering from either
smaller or larger depths. The layer kernelKL takes into account the intensity being scattered
at depthτ ′ in the direction of the wall, then reflected there, and then scattered at depthτ .
These kernels read explicitly

KB(τ, µ, τ ′, µ′) = 2δ(µ − µ′)θ(µ(τ − τ ′))
1

|µ|e−(τ−τ ′)/µ

KL(τ, µ, τ ′, µ′) = 2δ(µ + µ′)θ(µ)
R(µ)

µ
e−(τ+τ ′)/µ.

(2.25)

The final step consists in using (2.14) in order to derive from (2.23) the following closed
integral equation for the source function

0(τ, µ, µa) = p0(µ, µa)e
−τ/µa + (M ∗ 0)(τ, µ, µa) (2.26)

which we refer to as the Schwarzschild–Milne equation of the problem.
The kernelM has the following two components, in analogy with the kernelK from

which it derives

MB(τ, µ, τ ′, µ′) = θ(µ′(τ − τ ′))
p0(µ, µ′)

|µ′| e−(τ−τ ′)/µ′

ML(τ, µ, τ ′, µ′) = θ(−µ′)
p0(µ, −µ′)

|µ′| R(−µ′)e(τ+τ ′)/µ′
(2.27)

so that (2.26) reads explicitly

0(τ, µ, µa) = p0(µ, µa)e
−τ/µa +

∫ τ

0
dτ ′

∫ 1

0

dµ′

2µ′ p0(µ, µ′)e−(τ−τ ′)/µ′
0(τ ′, µ′, µa)

+
∫ ∞

τ

dτ ′
∫ 1

0

dµ′

2µ′ p0(µ, −µ′)e−(τ ′−τ)/µ′
0(τ ′, −µ′, µa)

+
∫ ∞

0
dτ ′

∫ 1

0

dµ′

2µ′ R(µ′)p0(µ, µ′)e−(τ+τ ′)/µ′
0(τ ′, −µ′, µa). (2.28)

In the case of isotropic scattering, the phase functionp0(µ, µ′) = 1 is a constant,
and the source function0(τ, µ, µa) does not depend onµ. The Schwarzschild–Milne
equation (2.26), (2.28) thus takes a simpler form, that has been extensively studied in [15].
The rest of this section is devoted to an extension of the results derived there to the general
case of anisotropic scattering.

2.3. Solutions of Schwarzschild–Milne equation and sum rules

In the general case of conservative anisotropic scattering, the Schwarzschild–Milne
equation (2.26), (2.28) has a special solution0S(τ, µ, µa) which remains bounded as
τ → ∞, whereas the associated homogeneous equation has a linearly growing solution
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0H(τ, µ). More precisely, it can be checked by means of (2.18), (2.19) that both source
functions and the associated specific intensities have the following asymptotic behaviour for
large depths(τ � 1), up to exponentially small corrections

0S(τ, µ, µa) ≈ τ1(µa)

IS(τ, µ, µa) ≈ τ1(µa)

0H (τ, µ) ≈ τ − µ(τ ∗ − 1) + τ0τ
∗

IH (τ, µ) ≈ τ − µτ ∗ + τ0τ
∗.

(2.29)

The quantitiesτ0 and τ1(µa) are unknown so far. Let us anticipate that they play a
central role in the following, in the sense that they will bear the full non-trivial dependence
of quantities on the scattering mechanism. These quantities also obey two groups of sum
rules, (2.37), (2.38) and (2.41), (2.42), to be derived below.

To do so, it is most convenient to introduce the Green’s functionGS(τ, µ, τ ′, µ′) of the
problem, along the lines of [15]. It is defined as the solution which remains bounded as
τ → ∞ of the equation

GS(τ, µ, τ ′, µ′) = p0(µ, µ′)δ(τ − τ ′) + (M ∗ GS)(τ, µ, τ ′, µ′). (2.30)

The kernelK and the Green’s functionGS possess the symmetry properties

K(τ, µ, τ ′, µ′) = K(τ ′, −µ′, τ,−µ)

GS(τ, µ, τ ′, µ′) = GS(τ
′, −µ′, τ,−µ)

(2.31)

which merely express the time-reversal symmetry of any sequence of scattering events.
As a consequence of (2.26), the special solution0S(τ, µ, µa) can be expressed in terms

of the Green’s function as

0S(τ, µ, µa) =
∫ ∞

0
dτ ′ e−τ ′/µaGS(τ, µ, τ ′, µa). (2.32)

We also define for further reference the following bistatic coefficient

γ (µa, µb) =
∫ ∞

0
dτ e−τ/µb0S(τ, −µb, µa)

=
∫ ∞

0
dτ e−τ/µb

∫ ∞

0
dτ ′ e−τ ′/µaGS(τ, −µb, τ

′, µa). (2.33)

The latter expression defines the bistatic coefficient for any complex values of its arguments
with Reµa > 0, Reµb > 0, even outside the physical rangeµa, µb 6 1. The symmetry
γ (µa, µb) = γ (µb, µa) is a consequence of the properties (2.31). It is thus again due to
time-reversal symmetry.

On the other hand, a relationship between both solutions0H(τ, µ) and 0S(τ, µ, µa)

of the Schwarzschild–Milne equation can be derived as follows. The Green’s function
GS(τ, µ, τ ′, µ′) is clearly asymptotically proportional to the homogeneous solution0H(τ, µ)

whenτ ′ goes to infinity, namely

lim
τ ′→∞

GS(τ, µ, τ ′, µ′) = 1

D
0H(τ, µ) (2.34)

where the proportionality constantD will be shown in a while to be equal to the
dimensionless diffusion coefficient (2.39).

As a consequence of equations (2.29), (2.32)–(2.34), we have

τ1(µa) = lim
µb→∞

γ (µa, µb)

µb

= 1

D

∫ ∞

0
dτ e−τ/µa0H (τ, −µa). (2.35)



4924 E Amic et al

We now turn to the actual derivation of the sum rules obeyed by the quantities
defined so far, which are related to the so-calledF and K-integrals, with the notations
of Chandrasekhar [1].

The first group of two sum rules is a consequence of the conservation of the flux in the
z-direction in a non-absorbing medium, given by the followingF -integral

F(τ) =
∫ 1

−1

dµ

2
µI (τ, µ). (2.36)

It can indeed be checked, using equation (2.12), that dF/dτ = 0.
We investigate first theF -integralFS associated with the special solution0S(τ, µ, µa).

Considering theτ → ∞ limit determinesFS = 0, whereas considering theτ → 0 limit
yields the sum rule∫ 1

0

dµ

2
T (µ)γ (µ, µa) = µa (2.37)

where the transmission coefficientT (µ) = 1 − R(µ) is given in table 1. Theµa → ∞
limit of (2.37), together with (2.35), yields another sum rule, namely∫ 1

0

dµ

2
T (µ)τ1(µ) = 1. (2.38)

We can evaluate in a similar way theF -integral FH associated with the homogeneous
solution 0H(τ, µ). This yields no independent sum rule, but leads to the identification of
the constantD of (2.30) with the dimensionless diffusion coefficient

D = τ ∗

3
. (2.39)

The diffusion coefficient indeed readsDphys = c`D = c`∗/3 in physical units [1–4]. The
transport velocity indeed coincides with the velocity of light in vacuumc, to leading order
in the regimè � λ0.

Besides the sum rules (2.37), (2.38), which were already given in [15] for isotropic
scattering, the radiative transfer equation also admits another group of two sum rules, which
are novel in this context, and whose intuitive interpretation is less evident. Consider the
so-calledK-integral, again with the notations of Chandrasekhar [1]

K(τ) =
∫ 1

−1

dµ

2
µ2I (τ, µ). (2.40)

It can be checked that equations (2.12), (2.18)–(2.20) yield dK/dτ = −F/τ ∗, hence
K(τ) = −Fτ/τ ∗ + K0, with K0 being independent ofτ . By considering theK-integrals
associated with the special solution0S(τ, µ, µa) and with the homogeneous solution
0H(τ, µ), we obtain after some algebra the following sum rules∫ 1

0

dµ

2
(1 + R(µ))µγ (µ, µa) = τ1(µa)

3
− µ2

a (2.41)∫ 1

0

dµ

2
(1 + R(µ))µτ1(µ) = τ0. (2.42)
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2.4. Diffuse reflected intensity

The evaluation of the angle-resolved diffuse reflected intensity by means of the general
formalism exposed above closely follows the lines of [4, 15]. We consider a half-space
geometry, and we assume that the limiting plane of the sample is subjected to a cylindrically
symmetric incident beam, characterized by an angle of incidenceθa. This technical
assumption includes the case of a plane wave at normal incidence(θa = 0). Under these
circumstances, the diffuse reflected intensity per solid angle d�b reads

dR(a → b)

d�b

= AR(θa, θb) = cosθa

4πm2

TaTb

µaµb

γ (µa, µb) (2.43)

where we have again used the notations of table 1:m = n0/n1 is the index mismatch, and
Ta = T (µa) andTb = T (µb) are the transmission coefficients in the incident and outgoing
directions, respectively.

The essential factor in the result (2.43) is the bistatic coefficientγ (µa, µb), whose
definition and general properties have been exposed in section 2.3. It will be evaluated
more explicitly in the large index mismatch regime in section 3, and in the very anisotropic
regime in section 4.

2.5. Diffuse transmitted intensity

In this section we consider the angle-resolved mean transmission of an optically thick slab,
of thicknessL = b`, with b � 1 being large but finite. A generalization of the reasoning
of section 2.1 allows us to write down the following Schwarzschild–Milne equation in this
geometry

0b(τ, µ, µa) = p0(µ, µa)e
−τ/µa +

∫ τ

0
dτ ′

∫ 1

0

dµ′

2µ′ p0(µ, µ′)e−(τ−τ ′)/µ′
0b(τ

′, µ′, µa)

+
∫ b

τ

dτ ′
∫ 1

0

dµ′

2µ′ p0(µ, −µ′)e−(τ ′−τ)/µ′
0b(τ

′, −µ′, µa)

+
∫ b

0
dτ ′

∫ 1

0

dµ′

2µ′ R(µ′)p0(µ, µ′)e−(τ+τ ′)/µ′
0b(τ

′, −µ′, µa)

+
∫ b

0
dτ ′

∫ 1

0

dµ′

2µ′ R(−µ′)p0(µ, −µ′)e−(2b−τ−τ ′)/µ′
0b(τ

′, µ′, µa). (2.44)

The solution of this equation for a thick slab can be constructed from both solutions0S

and0H of the half-space geometry, by means of a matching procedure, along the lines of
[4, 15]. Using the asymptotic forms (2.29), we obtain

0b(τ, µ, µa) ≈


0S(τ, µ, µa) − τ1(µa)

b + 2τ0τ ∗ 0H(τ, µ) (τ finite, b − τ � 1)

τ1(µa)

b + 2τ0τ ∗ 0H(b − τ, −µ) (b − τ finite, τ � 1).
(2.45)

Both expressions lead to a linear (diffusive) behaviour [3, 15] in the bulk of the sample
(τ � 1, b − τ � 1), namely

0b(τ, µ, µa) = τ1(µa)

b + 2τ0τ ∗ [b − τ + τ0τ
∗ + µ(τ ∗ − 1)] + O(e−τ , e−(b−τ)). (2.46)
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The derivation of the diffuse transmitted intensity per solid angle element d�b again
closely follows the lines of [4, 15]. We obtain

dT (a → b)

d�b

= τ ∗

b + 2τ0τ ∗ AT (θa, θb) = `∗

L + 2τ0`∗ AT (θa, θb) (2.47)

with

AT (θa, θb) = cosθa

12πm2

TaTb

µaµb

τ1(µa)τ1(µb) (2.48)

where we have again used the notations of table 1:m = n0/n1 is the index mismatch, and
Ta = T (µa) andTb = T (µb) are the transmission coefficients in the incident and outgoing
directions, respectively.

The essential ingredient in the above result is the functionτ1(µ), whose definition
and general properties have been exposed in section 2.3. It will also be evaluated more
explicitly in the large index mismatch regime in section 3, and in the very anisotropic regime
in section 4.

The result (2.47) shows that the effective thickness of the sample is(b + 2τ0τ
∗)` =

L + 2τ0`
∗. In other words,z0 = τ0`

∗ represents the thickness of a skin layer. This quantity
is also referred to as the injection depth, or the extrapolation length of the problem.

2.6. Enhanced backscattering cone

The general formalism exposed above can be extended to the study of the enhanced
backscattering phenomenon, which takes place in a narrow cone in the vicinity of the
exact backscattering direction [5]. This phenomenon is due to the constructive interference
between any path in the medium and its time-reversed counterpart. One of the goals of
this section is to derive a quantitative estimate of the width of the cone, with emphasis on
its dependence on the anisotropy of the scattering mechanism. As recalled in section 1,
the form of the backscattering cone can be predicted by summing the so-called maximally
crossed diagrams [10, 11]. This can be performed by means of a careful treatment of
radiative transfer theory [10–12, 15, 16].

We restrict the analysis to normal incidence(θa = 0), and to the geometry of a half-space
diffusive medium. We introduce the dimensionless transverse wavevector

Q = q` (2.49)

and its magnitude

Q = q` = k0`θ
′ = k1`θ > 0 (2.50)

whereθ ′ and θ are the incidence angles of the outgoing radiation, andk0 and k1 are its
wavenumbers, respectively inside and outside the diffusive medium, according to table 1.

Along the lines of [10–12, 15, 16], the reflected intensity in the vicinity of the
backscattering direction, i.e. forθ � 1, k1` � 1, andQ fixed, takes the form

AC(Q) ≈ T (1)2

4πm2
[γ (1, 1) + γC(Q) − p0(1, −1)/2] (2.51)

where

• the sum of ladder diagrams,γ (1, 1), yields the background reflected intensity in the
normal direction, in agreement with equation (2.43);

• the sum of the maximally crossed diagrams,γC(Q), represents the contribution of the
interference between the sequences of any number(n > 1) of scattering events and
their time-reversed counterparts;
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• the subtracted third term is the contribution of the single-scattering events(n = 1),
which are invariant under time inversion, and must not be counted twice.

We define the enhancement factor

B(Q) = AC(Q)

AR(0, 0)
= 1 + γC(Q) − p0(1, −1)/2

γ (1, 1)
. (2.52)

It turns out that the peak value of the interference contribution coincides with the background
term, i.e.γC(0) = γ (1, 1). Hence the enhancement factor at the top of the cone, namely

B(0) = 2 − p0(1, −1)

2γ (1, 1)
(2.53)

nearly equals two, up to the small contribution of single-scattering events.
We now turn to the actual determination ofγC(Q) [10–12, 15, 16]. Basically,

the transverse wavevectorQ causes a dephasing which amounts to replacing the pure
exponential damping exp(−τ/µ) of unscattered intensity by the complex exponential
exp(−(1 − iQ · n)τ/µ). Because of the vector nature ofQ, the source functions
0(m)(Q, τ, µ) pertaining to all sectors defined by the azimuthal integerm are coupled to
each other.

We choose coordinates such thatQ is oriented along the positivey-axis, in order to
simplify notations. The source functions then obey coupledQ-dependent Schwarzschild–
Milne equations of the form

0(m)(Q, τ, µ) = δm,0p0(µ, 1)e−τ +
∑

−∞<k<+∞
(M(m,k) ∗ 0(k))(Q, τ, µ) (2.54)

generalizing equation (2.26). TheQ-dependent Schwarzschild–Milne kernels readM(m,k) =
M

(m,k)
B + M

(m,k)
L , with

M
(m,k)
B (Q, τ, µ, τ ′, µ′) = θ(µ′(τ − τ ′))

pm(µ, µ′)
|µ′| e−(τ−τ ′)/µ′

Jm−k

(
Q

τ − τ ′

µ′
√

1 − µ′2
)

M
(m,k)
L (Q, τ, µ, τ ′, µ′) = θ(−µ′)

pm(µ, −µ′)
|µ′| R(−µ′)e(τ+τ ′)/µ′

Jm−k

(
Q

τ + τ ′

|µ′|
√

1 − µ′2
)

(2.55)

whereJm(z) denotes the Bessel function of integer order. The source functions have the
following property

0(−m)(Q, τ, µ) = (−1)m0(m)(Q, τ, µ) (2.56)

which they inherit from an analogous symmetry property of the Bessel functions, i.e.
J−m(z) = (−1)mJm(z),

Finally, the shape of the backscattering cone is given by

γC(Q) =
∫ ∞

0
dτ e−τ0(0)(Q, τ,−1). (2.57)

The top of the backscattering cone, described by the small-Q behaviour ofγC(Q), is of
special interest, especially because of its universality. Indeed it is due to the contribution
of long paths in the diffusive medium, along which the radiation undergoes many scattering
events. In contrast, the wings of the cone, corresponding to a large reduced wavevectorQ,
only involve short sequences of two, three, etc scattering events, and are therefore expected
to depend on the details of the scattering mechanism. This is already apparent in the
subtracted term in equations (2.52), (2.53), which involves the single-scattering cross section
in the direction of exact backscattering.
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The universal small-Q behaviour of the backscattering cone can be determined as
follows. We look for an approximate solution forQ � 1 to the coupled Schwarzschild–
Milne equations (2.54) as a decaying exponential, with an inverse extinction lengths0, times
expansions in Legendre functions of the form

0(m)(Q, τ, µ) = e−s0τG(m)(Q, µ) with G(m)(Q, µ) =
∑
`>|m|

c`,mP`,m(µ). (2.58)

First, we observe that the arguments of the Bessel functions in the kernels (2.55) are
proportional toQ. Since we haveJm(z) ≈ (z/2)m/m! for small z andm > 0, we therefore
expect that the coefficients of the expansion (2.58) fall off asc`,m ∼ Q|m|. By virtue of
the symmetry (2.56), we can thus restrict the analysis to the sectorsm = 0 andm = 1.
Second, we make the hypothesis, to be checked later on, that the inverse extinction length
s0 is proportional toQ. Then, deep in the bulk of the medium, i.e. forτ � 1, the integral
equations (2.54) can be approximated by differential equations, obtained by expanding the
source functions in powers of(τ ′−τ), keeping only the first two derivatives, and consistently
the first two powers ofQ. We thus obtain the following two coupled equations

0(0)(Q, τ, µ) = D(0)

[
0(0)(Q, τ, µ) − µ

d

dτ
0(0)(Q, τ, µ) + µ2 d2

dτ 2
0(0)(Q, τ, µ)

−Q2

2
(1 − µ2)0(0)(Q, τ, µ) + Q

√
1 − µ20(1)(Q, τ, µ) + · · ·

]
(2.59a)

0(1)(Q, τ, µ) = D(1)

[
0(1)(Q, τ, µ) − Q

2

√
1 − µ20(0)(Q, τ, µ) + · · ·

]
. (2.59b)

We first solve (2.59b) as follows. Since we only need a leading order estimate of
0(1)(Q, τ, µ), we only keep the first coefficientc1,1 of the expansion (2.58). Using (2.16),
(2.17), we thus obtain

c1,1 ≈ −Q

2
(τ ∗ − 1)c0,0. (2.60)

By inserting this last result into (2.59a), and making use of (2.16) and (A.4), we obtain the
following recursion relations for the coefficientsc`,0

c`,0

$`

≈
(

1 − Q2τ ∗

2

)
c`,0 + s0

(
`

2` − 1
c`−1,0 + ` + 1

2` + 3
c`+1,0

)
+

(
s2

0 + Q2τ ∗

2

)
×

(
`(` − 1)

(2` − 1)(2` − 3)
c`−2,0 + 2`2 + 2` − 1

(2` − 1)(2` + 3)
c`,0

+ (` + 1)(` + 2)

(2` + 3)(2` + 5)
c`+2,0

)
. (2.61)

It is clear from the structure of these relations that, whenQ is small, the coefficients
c`,0 ∼ Q` decay rapidly. Keeping this hierarchy in mind, and using$0 = 1, we obtain the
estimates

c1,0 ≈ Q(τ ∗ − 1)c0,0 (2.62)

and

s0 ≈ Q. (2.63)

This last result corroborates the hypothesis made in the derivation of (2.59). We shall come
back to its meaning at the end of section 2.7.
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The next step also follows the lines of [15]. The small-Q behaviour of0C(Q, τ, µ)

has a term proportional toQ, which is proportional to the homogeneous solution0H(τ, µ)

of the Schwarzschild–Milne equation (2.26), (2.28). Indeed, consider the right-hand side
of (2.54) form = 0. The leadingQ-dependence there comes either from the action ofM(0,0)

on 0(0), or from the action ofM(0,±1) on 0(±1). All these explicitQ-dependences begin
with Q2. Putting everything together, we are left with the following estimates of the source
function 0(0)(Q, τ, µ). For Q � 1 and fixedτ we have

0(0)(Q, τ, µ) = 0S(τ, µ, 1) − Qτ1(1)0H (τ, µ) + O(Q2) (2.64)

whereas forQ � 1 andτ � 1 simultaneously we get

0(0)(Q, τ, µ) = τ1(1)e−Qτ (1 + Q(µ(τ ∗ − 1) − τ0τ
∗) + O(Q2)). (2.65)

The universal peak of the backscattering cone is then evaluated by inserting the
estimate (2.64) into (2.57), using (2.33), (2.35). We thus obtain the following expression

γC(Q) = γ (1, 1)

(
1 − Q

1Q
+ O(Q2)

)
(2.66)

where the width of the cone reads

1Q = 3γ (1, 1)

τ1(1)2τ ∗ (2.67)

i.e. in physical units

1θ = 3γ (1, 1)

τ1(1)2

1

k1`∗ (2.68)

with k1 being the wavenumber of radiation outside the diffusive medium. This simple 1/`∗

law is already predicted by the diffusion approximation [31, 32].

2.7. Extinction and absorption lengths

Up to now we have assumed that the diffusive medium is conservative. This means that the
light only experiences elastic collisions; there is neither absorption, nor inelastic scattering,
implying the normalization (2.2) of the phase function. We now want to discuss briefly the
case of a weakly absorbing diffusive medium, characterized by a non-trivial albedoa such
that 1− a � 1. In this case the diffuse intensity is expected to die-off exponentially inside
the medium, with a characteristic absorption lengthLabs.

The known expression [2, 3, 12] of the absorption length can easily be recovered by
means of the formalism exposed in the previous section, in the case of general anisotropic
scattering and in the regime of weak absorption. We shall actually determine the extinction
length of the more general problem defined by the coupledQ-dependent Schwarzschild–
Milne equations (2.54). We look for slowly varying source functions of the form (2.58),
along the lines of section 2.6. The main difference is that we have now$0 = a 6= 1.
It turns out that the estimates (2.60), (2.62) of the amplitudesc1,m still hold, whereas we
obtain

s2
0 ≈ Q2 + 3(1 − a)

τ ∗ . (2.69)

The Q-dependent extinction length in the presence of absorption therefore reads

Lext(Q) = `

s0
≈ `(

Q2 + 3(1−a)

τ ∗

)1/2 (Q � 1, 1 − a � 1). (2.70)
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The usual absorption length is obtained by settingQ = 0 in the above expression, namely

Labs ≈
(

``∗

3(1 − a)

)1/2

(1 − a � 1) (2.71)

in agreement with [2, 3, 12]. Another particular case is conservative scattering, in the absence
of absorption, where we recover the result (2.63), namely

Lext(Q) ≈ `

Q
≈ 1

q
. (2.72)

This simple result holds for a general anisotropic scattering. It is a manifestation of
the isotropic character of the long-distance diffusive behaviour of the multiple scattering
problem. We shall also come back to this point in section 5.

3. Large index mismatch regime

In this section, we extend to the general case of anisotropic scattering the approach of [15],
which predicts the behaviour of quantities in the regime where the optical indicesn0 and
n1 of the diffusive medium and of the surroundings are very different from each other, i.e.
when their ratiom = n0/n1 is either very small or very large. As already pointed out
in [15], important simplifications occur in these regimes of a large index mismatch, where
the Fresnel transmission coefficient of the boundaries of the medium is very small. To be
more specific, radiation cannot enter the medium (respectively, leave the medium) in the
limit m � 1 (respectively,m � 1), except at normal incidence. Reference [12] already
contains part of the results of this section.

3.1. Diffuse reflection and transmission

Along the lines of [15], we evaluate the reflected and transmitted intensities in the large
index mismatch regime by means of the following singular perturbative expansion of the
Green’s functionGS(τ, µ, τ ′, µ′), defined by (2.30).

The starting point consists in noticing the identity

ML(τ, µ, τ ′, µ′) = R(−µ′)MB(τ, µ,−τ ′, −µ′) (3.1)

between both kernels defined in (2.27). UsingR(µ) = 1 − T (µ), we can recast (2.30) as

GS(τ, µ, τ ′, µ′) = p0(µ, µ′)δ(τ − τ ′)

+
∫ ∞

0
dτ ′′

∫ 1

−1

dµ′′

2
[MB(τ − τ ′′, µ, 0, µ′′) + MB(τ + τ ′′, µ, 0, −µ′′)]

×GS(τ
′′, µ′′, τ ′, µ′)

−
∫ ∞

0
dτ ′′

∫ 1

0

dµ′′

2
T (µ′′)MB(τ, µ,−τ ′′, −µ′′)GS(τ

′′, µ′′, τ ′, µ′). (3.2)

In the limit of an infinitely strong index mismatch, i.e. form = 0 or m = ∞, the
transmission coefficientT (µ) vanishes identically, so that the last integral of equation (3.2),
involving T (µ), is absent. It can be checked that the remaining terms only determine the
Green’s function up to an additive constant. This constant is only fixed by the action of the
last integral, involvingT (µ), in (3.2). It can therefore be expected to diverge asm → 0
andm → ∞.

In order to demonstrate this explicitly, we expand the Green’s function according to

GS(τ, µ, τ ′, µ′) = CS + G0(τ, µ, τ ′, µ′) + · · · (3.3)
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with the hypothesis thatCS diverges, whereasG0(τ, µ, τ ′, µ′) remains finite, and the dots
stand for terms which go to zero, asm → 0 or m → ∞. The finite part G0(τ, µ, τ ′, µ′)
obeys the following equation

G0(τ, µ, τ ′, µ′) = p0(µ, µ′)δ(τ − τ ′)

+
∫ ∞

0
dτ ′′

∫ 1

−1

dµ′′

2
[MB(τ − τ ′′, µ, 0, µ′′) + MB(τ + τ ′′, µ, 0, −µ′′)]

×G0(τ
′′, µ′′, τ ′, µ′) − CS

∫ ∞

0
dτ ′′

∫ 1

0

dµ′′

2
T (µ′′)MB(τ, µ,−τ ′′, −µ′′)

(3.4)

together with the consistency condition∫ ∞

0
dτ

∫ ∞

0
dτ ′

∫ 1

−1

dµ

2

∫ 1

0

dµ′

2
T (µ′)MB(τ + τ ′, µ, 0, −µ′)G0(τ

′, µ′, τ ′′, µ′′) = 0 (3.5)

derived along the lines of [15].
The constantCS of the expansion (3.3) can be derived by integrating equation (3.4)

over the variables 0< τ < ∞ and−1 < µ < 1. This yields

CS = 4

T (3.6)

whereT is themean flux transmission coefficient

T = 2
∫ 1

0
µT (µ) dµ =


4m(m + 2)

3(m + 1)2
(m 6 1)

4(2m + 1)

3m2(m + 1)2
(m > 1).

(3.7)

This quantity assumes its maximumT = 1 in the absence of any index mismatch, i.e. for
m = 1, and it vanishes in both cases of a large index mismatch, according to

T ≈


8m

3
(m � 1)

8

3m3
(m � 1).

(3.8)

The asymptotic behaviour in the limitsm � 1 andm � 1 of the quantities pertaining to
reflection and transmission is immediately obtained by replacing in equations (2.33), (2.35)
the Green’s functionGS(τ, µ, τ ′, µ′) by its leading constant termCS . We thus obtain

τ0 ≈ 4

3T τ1(µ) ≈ 4µ

T γ (µa, µb) ≈ 4µaµb

T . (3.9)

These predictions are identical to those derived in [15], in the case of isotropic scattering.
We have thus shown that the quantities which determine the diffuse reflected and transmitted
intensities do not dependat all on the anisotropy of the cross section in the large index
mismatch limit.

3.2. Enhanced backscattering cone

The shapeγC(Q) of the cone of enhanced backscattering for a normal incidence can also
be evaluated analytically in the regimesm � 1 or m � 1 of a large index mismatch. By
inserting the estimates (3.9) into the general result (2.67), we find that the width of the cone
is small in the large index mismatch regime, since it is proportional to the mean transmission
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T . This observation suggests that we should consider the scaling regime where bothQ and
T are simultaneously small.

In order to investigate this regime, we first recast theQ-dependent coupled
Schwarzschild-Milne equations (2.54) in a form similar to equation (3.2). We then look
for a solution of the form (2.58), where the inverse extinction lengths0 = Q is taken from
equation (2.63). We then proceed along the lines of section 3.1, integrating both sides of the
coupled Schwarzschild–Milne equations over the variables 0< τ < ∞ and−1 < µ < 1.
The integrals overτ ′ which are independent of the transmissionT (µ) can be performed
explicitly, whereas theQ-dependence of the integrals involvingT (µ) can be neglected in
the scaling regime. We thus obtain the following equations for the functionsG(m)(Q, µ)∫ 1

−1

dµ

2
G(m)(Q, µ) = Qδm,0 − Q

∫ 1

−1

dµ

2

∫ 1

0

dµ′

2
µ′T (µ′)pm(µ, µ′)G(m)(Q, µ′)

+
∑

−∞<k<+∞

∫ 1

−1

dµ

2

∫ 1

−1

dµ′

2
pm(µ, µ′)3(m,k)(Q, µ′)G(k)(Q, µ′) (3.10)

with

3(m,k)(Q, µ) = 1√
1 + Q2(1 − µ2)

( −Q
√

1 − µ2

1 +
√

1 + Q2(1 − µ2)

)|m−k|

×
{

(−1)m−k (m 6 k)

1 (m > k).
(3.11)

The solution of equation (3.10) in the scaling regime is as follows. Along the lines
of section 2.7, we only keep the sectorsm = 0 and m = 1, and only the leading
amplitude in the expansion (2.58) in each sector, namely we setG(0)(Q, µ) ≈ c0,0,
G(1)(Q, µ) ≈ c1,1

√
1 − µ2. Inserting these expressions into (3.10), all integrals can be

performed, to leading order inQ. We thus obtainc1,1 ≈ −(Q/2)(τ ∗ − 1)c0,0, in agreement
with equation (2.60), while equation (2.57) yieldsγC(Q) ≈ c0,0. After some algebra, we
are left with the following scaling result:

γC(Q) ≈ 1

T /4 + Qτ ∗/3
(Q � 1, T � 1). (3.12)

The small-Q expansion of this prediction reads

γC(Q) ≈ 4

T − 16Qτ ∗

3T 2
+ · · · . (3.13)

The width of the cone therefore scales as

1Q ≈ 3T
4τ ∗ (3.14)

in agreement with the general formula (2.67), together with the results (3.9).
The comment made at the end of section 3.1 still applies here. The scaling form of

the enhanced backscattering cone in the regime of a large index mismatch does not depend
at all on the anisotropy of the scattering cross section, apart from the simple power ofτ ∗

already predicted by the diffusion approximation [31, 32].

4. Very anisotropic scattering

In this section we investigate the regime where the scattering cross section is very
anisotropic, i.e. strongly peaked in a narrow cone of width2rms � 1 around the forward



Anisotropic multiple scattering in diffusive media 4933

direction, with22
rms = 〈22〉. We thus have 1− $1 ≈ 22

rms/2 � 1, so that the anisotropy
parameterτ ∗ ≈ 2/22

rms is very large. The wavelengthλ0 of radiation in the medium, the
scattering mean free path̀, and the transport mean free path`∗ can therefore be considered
as three independent length scales(λ0 � ` � `∗), besides other characteristic lengths, such
as the sample thicknessL, and possibly the absorption lengthLabs.

The interest in this very anisotropic regime is twofold. First, we shall show that the
radiative transfer problem in the absence of internal reflections is exactly solvable in this
regime, just as it is for isotropic scattering, whereas the intermediate situation of a general
anisotropy can only be treated numerically. Second, the dependence of physical quantities
on anisotropy can be expected to yield the largest effects in the very anisotropic regime.
We shall come back to this point in section 5.

4.1. The example of large spheres

We first recall how very anisotropic scattering can be realized experimentally. We consider
the multiple scattering of light by large dielectric spheres, with radiusa much larger than
the wavelengthλ0 in the medium, i.e. with scale parameterk0a � 1, so that geometrical
optics can be used. Furthermore we assume that the optical indexnS of the spheres is very
close to the mean indexn0 of the medium, i.e.

nS

n0
= mS = 1 + δS (|δS | � 1). (4.1)

The study of the scattering cross section of electromagnetic waves by dielectric spheres
is an old classical subject. The full solution was first derived by Mie in 1908. Reference [33]
provides an extensive overview of this field. The regimek0a � 1 and|δS | � 1 still has to
be split into several subcases, according to the value of the combination|δS |k0a. This can be
understood as follows. In the framework of geometrical optics we can distinguish between
the diffracted light, which is outgoing within an angle2diffr ∼ 1/(k0a), independent ofδS ,
and the refracted light, which is outgoing within an angle2refr ∼ |δS |, independent ofk0a.

From now on we concentrate our attention on the regime|δS | � 1, k0a � 1, and
|δS |k0a � 1. In this regime we have2diffr � 2refr � 1. The cross sections associated
with each of the above processes asymptotically readsσdiffr ≈ σrefr ≈ πa2, so that the total
elastic cross sectionσ ≈ 2πa2 is twice the geometrical one. This is theextinction paradox.
We make the following approximations. We neglect the diffraction phenomenon by setting
2diffr = 0. We treat the refracted light according to the laws of geometrical optics, as
illustrated in figure 1. We neglect all the rays which are reflected at least once at the surface
of the sphere, so that we only have to consider the refracted ray drawn on the figure. The
corresponding phase function reads

prefr(2) = 4 sinβ cosβ

sin2

∣∣∣∣ dβ

d2

∣∣∣∣ (4.2)

with the notations of figure 1, which also imply

2 ≈ −2δS tanβ. (4.3)

Equations (4.2), (4.3) lead to the Lorentzian-squared scaling form [33]

prefr(2) ≈ 16δ2
S

(22 + 4δ2
S)

2
. (4.4)

The cross section is thus strongly peaked in the forward direction, as anticipated.
We now turn to the evaluation of the coefficient$1,refr corresponding to refracted light.

The integral〈22〉refr = ∫ ∞
−∞ 22prefr(2)2 d2, with the phase function of equation (4.4),



4934 E Amic et al

Figure 1. Laws of geometrical
optics for the refraction of light by
a large dielectric sphere.

is logarithmically divergent. A more careful treatment is therefore needed, which consists
in using directly equation (4.2), choosingu = sin2 β as the integration variable. We thus
obtain

$1,refr = 1

3m2
S

+ 4

m2
S

∫ umax

0
u du

√
(1 − u)(m2

S − u) (4.5)

with umax being the smaller of both numbers 1 andm2
S . The integral in (4.5) can be

performed explicitly for bothmS < 1 andmS > 1. In both cases we obtain

$1,refr ≈ 1 − 2δ2
S ln

3

|δS | with 3 = 2e−3/2 (|δS | � 1). (4.6)

The anisotropy parameter can be derived from the above estimate, not forgetting that
σdiffr ≈ σrefr ≈ σ/2 implies 1− $1 = (1 − $1,refr)/2. To leading order for|δS | � 1, this
yields

τ ∗ = `∗

`
≈ 1

δ2
S ln 3

|δS |
. (4.7)

It is therefore evident that large spheres with a weak dielectric contrast provide a physical
instance of very anisotropic scattering, as described at the beginning of this section, with the
refraction angle2refr ∼ |δS | � 1 playing the role of2rms, up to a logarithmic correction.
We shall come back to this last point in section 5.

4.2. Scaling limit of the Schwarzschild–Milne equation

We now show that the general formalism of section 2 undergoes important simplifications in
the regime of very anisotropic scattering. These will allow us to solve the Schwarzschild–
Milne equation in the absence of index mismatch at the interface. This analytical solution,
to be described in sections 4.3 and 4.4, therefore shows that both limiting cases of isotropic
scattering and of very anisotropic scattering are nearly on the same footing as far as the
existence of exact results is concerned.

The simplifications in the regime of very anisotropic scattering can be understood in
physical terms as follows. Consider the random sequence of scattering events experienced
by a light ray. At every scattering event, the directionn of the ray is only modified by a
slight amount of order2rms, with 22

rms ≈ 2/τ ∗. The extremity of the vectorn therefore
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performs a Brownian motion on the unit sphere, with a small angular diffusivityε ∼ 22
rms.

A similar picture has long been used in the context of semiflexible polymer chains: the
so-called Kratky–Porod theory models polymers as continuous persistent walks, whose unit
tangent vectors obey a diffusion equation on the sphere (see [34] for a review).

In more quantitative terms, the relationship (2.7) between then-dependence of the
specific intensityI (r, n) and the source function0(r, n) takes the form

0(r, n) ≈ (1 + ε1)I (r, n) (4.8)

where1 is the Legendre operator (Laplace operator on the unit sphere)

1 = cotθ
∂

∂θ
+ ∂2

∂θ2
+ 1

sin2 θ

∂2

∂ϕ2
. (4.9)

As a consequence, the integral operatorsD(m), introduced in equation (2.15), simplify to
the following differential operators

D(m) ≈ 1 + ε1(m) (4.10)

where

1(m) = cotθ
∂

∂θ
+ ∂2

∂θ2
− m2

sin2 θ
= (1 − µ2)

∂2

∂µ2
− 2µ

∂

∂µ
− m2

1 − µ2
(4.11)

is the Legendre operator in the sector defined by the azimuthal integerm.
The angular diffusivityε is then determined by observing thatP1(µ) = µ is an

eigenfunction of1(0), with eigenvalue(−2), and ofD(0), with eigenvalue$1, by virtue of
equation (2.16). We thus identify$1 = 1 − 2ε, hence, using (2.20),

ε = 1

2τ ∗ = `

2`∗ ≈ 22
rms

4
(4.12)

in agreement with the above heuristic estimate.
The radiative transfer equations (2.12) thus assume the differential form

2τ ∗µ
d

dτ
I (m)(τ, µ) = 1(m)I (m)(τ, µ) (4.13)

which demonstrates that quantities vary over length scales of orderτ ∼ τ ∗, i.e. z ∼ `∗.
In the next two sections we present our exact analytical predictions concerning observables
pertaining to optically thick slabs, in the regime of very anisotropic scattering, in the absence
of internal reflections. The analysis roughly follows the presentation of section III of [15],
devoted to the case of isotropic scattering.

4.3. Exact treatment in the absence of internal reflections: the homogeneous case

This section is devoted to an analytic determination of the solution0H(τ, µ) of the
homogeneous Schwarzschild–Milne equation in the regime of very anisotropic scattering,
and of the associated quantities of interest,τ0 andτ1(µ).

It is convenient to consider the Laplace transformgH (s, µ) of 0H(τ, µ), defined as
follows

gH (s, µ) =
∫ ∞

0
dτ 0H (τ, −µ)esτ (Res < 0). (4.14)
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The Schwarzschild–Milne equation (2.26), (2.28) can be recast as

gH (s, µ) =


D(0)

[
gH (s, µ)

1 + sµ

]
(−1 < µ < 0)

D(0)

[
gH (s, µ) − τ ∗τ1(µ)/3

1 + sµ

]
(0 < µ < 1)

(4.15)

since we havegH (−1/µ, µ) = τ ∗τ1(µ)/3 for 0 < µ < 1, as a consequence of
equations (2.35), (2.39).

We now expand (4.15), using the expression (4.10), (4.12) of the operatorD(0). We
introduce the rescaled Laplace variable

σ = 2sτ ∗ (4.16)

as well as a new unknown functionhH (σ, µ), defined as follows

gH (s, µ) =
{

4τ ∗2(1 + sµ)hH (σ, µ) (−1 < µ < 0)

4τ ∗2(1 + sµ)hH (σ, µ) + τ ∗τ1(µ)/3 (0 < µ < 1).
(4.17)

We assume thatτ1(µ) vanishes faster than linearly inµ for µ → 0. This hypothesis will be
checkeda posteriori, as it will turn out thatτ1(µ) ∼ µ3/2 for µ → 0 (see equation (4.55)).
The functionhH (σ, µ) is then continuously differentiable as a function ofµ, and it obeys
the following equation

(1(0) − σµ)hH (σ, µ) =
{

0 (−1 < µ < 0)

τ1(µ)/6 (0 < µ < 1).
(4.18)

By means of the change of variable

µ = tanhx (4.19)

equation (4.18) can be recast in the form of the following inhomogeneous Schrödinger
equation on the realx-line

h′′
H (σ, x) − σV (x)hH (σ, x) =

{
0 (x < 0)

V (x)ν(x)/6 (x > 0).
(4.20)

In this formula the primes denote differentiation with respect tox. The potential

V (x) = tanhx(1 − tanh2 x) (4.21)

is an odd function ofx, such thatV (x) dx = µ dµ, and we have set

τ1(µ) = µν(x) (0 < µ < 1, x > 0). (4.22)

Equation (4.20) is a self-consistent equation for the two unknown functionshH (σ, x)

and ν(x). Analyticity properties in the complexσ -variable turn out to allow for an exact
analytical solution of this equation.

We introduce a basis of two elementary solutions{u1(σ, x), u2(σ, x)} of the
(homogeneous) Schrödinger equation

u′′(σ, x) − σV (x)u(σ, x) = 0 (4.23)

with the following asymptotic behaviour

u1(σ, x) ≈ 1 u2(σ, x) ≈ x (x → −∞) (4.24)

up to exponentially small corrections. Similarly we introduce the basis{v1(σ, x), v2(σ, x)},
with the asymptotic behaviour

v1(σ, x) ≈ 1 v2(σ, x) ≈ x (x → ∞). (4.25)
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The Schr̈odinger equation (4.23) admits solutions with the above boundary conditions, since
the potentialV (x) vanishes exponentially asx → ±∞. The four solutions above are entire
functions ofσ , i.e. they are analytic in the wholeσ -plane. Furthermore they are related by
the following identities

v1(σ, x) = u1(−σ, −x) v2(σ, x) = −u2(−σ, −x) (4.26)

because the potentialV (x) is odd.
We recall that, ifu(x) andv(x) are any two solutions of the Schrödinger equation (4.23),

with the sameσ , their Wronskian

W {u, v} = u(x)v′(x) − u′(x)v(x) (4.27)

is independent ofx. The boundary conditions (4.24), (4.25) imply that both bases of
functions have unit Wronskian, namely

W {u1, u2} = W {v1, v2} = 1. (4.28)

For generic values of the parameterσ , both bases of solutions are related by a 2× 2
transfer matrixof the form(

v1

v2

)
=

(
F(σ) G(σ)

H(σ) F (−σ)

) (
u1

u2

)
. (4.29)

The three functions which enter equation (4.29) are entire functions ofσ ; the determinant
of the matrix isF(σ)F (−σ) − G(σ)H(σ) = 1; as a consequence of equation (4.26),G(σ)

andH(σ) are even functions ofσ .
The above functions also govern the non-trivial asymptotic behaviour of the bases of

solutions

u1(σ, x) ≈ F(−σ) − G(σ)x u2(σ, x) ≈ −H(σ) + F(σ)x (x → ∞)

v1(σ, x) ≈ F(σ) + G(σ)x v2(σ, x) ≈ H(σ) + F(−σ)x (x → −∞)
(4.30)

as well as their mixed Wronskians

W {u1, v1} = G(σ) W {u1, v2} = F(−σ)

W {u2, v1} = −F(σ) W {u2, v2} = −H(σ).
(4.31)

The first terms of the Taylor expansion ofu1(σ, x) andu2(σ, x) aroundσ = 0 read

u1(σ, x) = 1 − σ

2
(1 + tanhx) + · · ·

u2(σ, x) = x + σ
(x

2
(1 − tanhx) + ln(2 coshx)

)
+ · · · .

(4.32)

We have also determined the terms of orderσ 2, which are too lengthy expressions to be
reported here. They imply

F(σ) = 1 + σ + σ 2/2 + · · · G(σ) = σ 2/3 + · · ·
H(σ) = (7/6 − π2/36)σ 2 + · · · . (4.33)

On the other hand, large values of the complex parameterσ correspond to thesemiclassical
regime for the Schr̈odinger equation (4.23), where the behaviour of the functionsu1(σ, x)

and u2(σ, x) can be derived by means of a WKB-like approximation. This regime is
analysed in detail in appendix B. Let us mention that the wavefunctions display oscillations
when eitherσ > 0 andx < 0 or σ < 0 andx > 0, whereas they are growing or decaying
exponentially in the other two cases.



4938 E Amic et al

The function G(σ) deserves some more attention, since it will play a central role
in the following. G(σ) can be viewed as thefunctional determinantof the Schr̈odinger
equation (4.23), in the following sense. Assumeσ is such thatG(σ) = 0. We have then

v1(σ, x) = F(σ)u1(σ, x) u1(σ, x) = F(−σ)v1(σ, x) F (σ )F (−σ) = 1. (4.34)

In other words, for such aσ , the Schr̈odinger equation (4.23) has a bounded solution
over the whole real line. Throughout the following, using slightly improper terms, such
a value ofσ is called aneigenvalueof the Schr̈odinger equation, and the corresponding
function v1(σ, x) is referred to as the associatedeigenfunction. The semiclassical analysis
of appendix B demonstrates that there is an infinite sequence of real eigenvalues. We label
them by an integer−∞ < n < ∞, so thatσn > 0 for n > 1, σ0 = 0, andσ−n = −σn. The
associated eigenfunctionsv1(σn, x) are orthogonal with respect to the following indefinite
metric∫ ∞

−∞
v1(σm, x)v1(σn, x)V (x) dx = Nnδm,n (−∞ < m, n < ∞). (4.35)

The squared normsNn obey the symmetry property

N−n

F (−σn)
= − Nn

F(σn)
(4.36)

as a consequence of (4.34). The eigenfunctionv1(0, x) = 1 associated with the zero mode
σ0 = 0 is peculiar, since its squared norm readsN0 = 0. As a consequence, the basis of
eigenfunctions{v1(σn, x), n 6= 0} only spans the set of bounded functionsf (x) on the real
x-line such that∫ ∞

−∞
f (x)V (x) dx = 0. (4.37)

For such functions, we have

f (x) =
∑
n6=0

cnv1(σn, x) (4.38)

with

cn = 1

Nn

∫ ∞

−∞
v1(σn, x)f (x)V (x) dx. (4.39)

The determination of the contribution of the zero mode to functionsf (x) which do not
obey the condition (4.37), such as, for example, a constant, requires more care. An elegant
way of dealing with this problem consists in introducing a deformation parameterκ, as we
shall see in section 4.4.

It is advantageous to factor the entire functionG(σ) as follows

G(σ) = σ 2

3
P(σ)P (−σ) (4.40)

with the notation

P(σ) =
∏
n>1

(
1 + σ

σn

)
. (4.41)

The explicit solution of the inhomogeneous Schrödinger equation (4.20) now goes as
follows. SincehH (σ, x) is a regular function ofx in the x → −∞ limit, it is proportional
to u1(σ, x) for x < 0, namely

hH (σ, x) = aH (σ )u1(σ, x) (x < 0). (4.42)
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For x > 0 we solve equation (4.20) byvarying the constants, namely we look for a solution
of the form

hH (σ, x) = bH (σ, x)v1(σ, x) + cH (σ, x)v2(σ, x) (x > 0). (4.43)

The unknownconstantsbH (σ, x) andcH (σ, x) obey the requirements

b′
H (σ, x)v1(σ, x) + c′

H (σ, x)v2(σ, x) = 0 (4.44a)

b′
H (σ, x)v′

1(σ, x) + c′
H (σ, x)v′

2(σ, x) = V (x)ν(x)/6 (4.44b)

where the primes again denote differentiations with respect tox. equation (4.44a)
is a constraint imposeda priori, in order to break the large redundance of the
representation (4.43); equation (4.44b) is then a consequence of equation (4.20).
Equation (4.44) can be solved forb′

H and c′
H , using equation (4.28). Integrating the

expressions thus obtained, we get

bH (σ, x) = bH (σ, ∞) +
∫ ∞

x

v2(σ, y)ν(y)V (y) dy/6

cH (σ, x) = −
∫ ∞

x

v1(σ, y)ν(y)V (y) dy/6.

(4.45)

Indeed there cannot be a non-zero constantcH (σ, ∞), because this would correspond to an
unacceptable singular solution of the formhH (σ, x) ∼ x ∼ ln(1 − µ) for µ → 1.

Both expressions (4.42) and (4.43) have to match atx = 0, together with their first
derivatives. These two conditions determinebH (σ, 0) andcH (σ, 0), and some algebra then
leads to the identity

G(σ)aH (σ ) = −cH (σ, 0) =
∫ ∞

0
v1(σ, x)ν(x)V (x) dx/6. (4.46)

We can argue on equation (4.46) as follows. SincegH (s, µ) is analytic in the half-plane
Res < 0, aH (σ ) has the same property for Reσ < 0, so that the zeros−σn of G(σ) cannot
be poles ofaH (σ ). They are therefore zeros ofcH (σ, 0). On the other hand, theσn’s are not
zeros ofcH (σ, 0), since the integral expression in (4.46) is positive forσ > 0. Hence they
are poles ofaH (σ ). The final step concerns the small-σ behaviour of the quantities involved
in (4.46). The asymptotic behaviour (2.29) of0H(τ, µ) yields the following double-pole
structure for its Laplace transform nears = 0

gH (s, µ) = 1

s2
− τ ∗(τ0 + µ)

s
+ O(1) (s → 0) (4.47)

which implies the following small-σ behaviour ofaH (σ )

aH (σ ) = 1

σ 2
+ 1 − τ0

2σ
+ O(1) (σ → 0). (4.48)

We thus obtain finally

aH (σ ) = 1

σ 2P(−σ)
− cH (σ, 0) = P(σ)

3
. (4.49)

Equation (4.49) can be considered as an explicit result. IndeedP(σ), defined in (4.41), is
for all purposes a known function, since the eigenvaluesσn can be determined numerically,
essentially with arbitrary accuracy, via the partial-wave expansion procedure of appendix A.
Furthermore the semiclassical analysis of appendix B determines the asymptotic behaviour
of the eigenvalues in the regime of large quantum numbers(n � 1).
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Table 2. Comparison of the numerical values of various quantities of interest from the exact
solutions in the absence of internal reflections. First row: isotropic scattering, after [15];
second row: very anisotropic scattering (this work).τ0`

∗ is the thickness of a skin layer;
τ1(1) and γ (1, 1) respectively yield the transmitted and reflected intensities in the normal
direction; B(0) is the peak value of the enhancement factor at the top of the backscattering
cone;τ ∗1Q = k1`

∗1θ is the dimensionless width of this backscattering cone. The third row
gives the relative difference of the second case with respect to the first one.

τ0 τ1(1) γ (1, 1) B(0) τ ∗1Q

Isotropic (τ ∗ = 1) 0.710 446 5.036 475 4.227 681 1.881 732 1/2
Very anisotropic (τ ∗ � 1) 0.718 211 5.138 580 4.889 703 2 0.555 543
1 (%) 1.1 2.0 15.7 6.3 11.1

As a first consequence of the above results, we can determine the reduced thicknessτ0

of a skin layer, i.e. the reduced extrapolation length, by comparing the small-σ behaviour
of the expression (4.49) foraH (σ ) with the expansion (4.48). We thus obtain

τ0 = 1 − 2
∑
n>1

1

σn

= 0.718 211 64. (4.50)

The series converges, sinceσn grows asn2, according to the semiclassical estimate (B.21).
The number given in equation (4.50), as well as all the subsequent ones, has been obtained
by means of the partial-wave expansion described in appendix A. This number gives an
idea of the accuracy of this approach. The most significant numerical results are listed in
table 2, together with their counterparts in the case of isotropic scattering.

Second, the determination ofτ1(µ) goes as follows. We recall that this quantity is
related toν(x) by equation (4.22). Equations (4.46), (4.49) yield∫ ∞

0
v1(σ, x)ν(x)V (x) dx = 2P(σ). (4.51)

The small-σ expansion (4.32) ofu1(σ, x), together with (4.26), allows us to recover the
sum rules (2.38), (2.42) in the following form∫ ∞

0
ν(x)V (x) dx = 2

∫ ∞

0
ν(x) tanhxV (x) dx = 2τ0. (4.52)

On the other hand, the semiclassical estimates (B.18), (B.20) ofv1(σ, x) andP(σ) for
large values ofσ = K2 imply∫ ∞

0
ν(x) Ai(K2/3x)x dx ≈ (6/π)1/2K−5/3 (K � 1). (4.53)

This estimate yields, by means of (B.25) fors = 3
2, the small-x behaviour ofν(x), i.e.

ν(x) ≈ 6(2x/π)1/2 (x � 1). (4.54)

We thus obtain the following universal scaling behaviour of theτ1-function in the case
of very anisotropic scattering

τ1(µ) ≈ 6(2/π)1/2µ3/2 (µ � 1). (4.55)

This novel result is in contrast with the linear behaviourτ1(µ) ≈ µ
√

3 observed for isotropic
scattering. The law (4.55) also confirms the hypothesis made in the beginning of this section,
namely thatτ1(µ) vanishes faster than linearly inµ.
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Figure 2. Plot of exact expressions
for τ1(µ) in the absence of internal
reflections. Broken curve: isotropic
scattering, after [15]. Full curve: very
anisotropic scattering (this work).

Finally, we can extract the full functionsν(x) and τ1(µ) from (4.51) by means of the
inversion formula (4.38), (4.39). We obtain

ν(x) = 3(τ0 + tanhx) + 2
∑
n>1

P(σn)

Nn

v1(σn, x) (4.56)

i.e.
τ1(µ)

µ
= 3(τ0 + µ) + 2

∑
n>1

P(σn)

Nn

v1(σn, arg tanhµ). (4.57)

The semiclassical analysis of appendix B implies that the contribution of thenth
mode to the results (4.56), (4.57) falls off exponentially withn for x > 0, according
to exp[−Kn(I − I (x))]. This exponential convergence disappears asx → 0, where
equations (4.54), (4.55) apply. The explicit terms in front of the sums in equations (4.56),
(4.57), corresponding to the contribution of the zero mode(n = 0), have been anticipated
from results to be derived in section 4.4.

Figure 2 shows a plot of the functionτ1(µ), for both isotropic scattering [15] and very
anisotropic scattering (equation (4.57)). The maximal valuesτ1(1) for both cases are given
in table 2. The difference between both limiting cases is remarkably small.

4.4. Exact treatment in the absence of internal reflections: the inhomogeneous case

In this section we derive analytical expressions in the regime of very anisotropic scattering
of the special solution0S(τ, µ, µa), with its by-product the bistatic coefficientγ (µa, µb).

In analogy with equation (4.14), we define the Laplace transform of the source function
as follows:

gS(s, µ, µa) =
∫ ∞

0
dτ 0S(τ, −µ, µa)e

sτ (Res < 0). (4.58)

The Schwarzschild–Milne equation (2.26), (2.28) can be recast as

gS(s, µ, µa) =


µap0(−µ, µa)

1 − sµa

+ D(0)

[
gS(s, µ, µa)

1 + sµ

]
(−1 < µ < 0)

D(0)

[
gS(s, µ, µa) − γ (µ, µa)

1 + sµ

]
(0 < µ < 1)

(4.59)
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since we havegS(−1/µ, µ, µa) = γ (µa) for 0 < µ < 1, as a consequence of
equation (2.33).

In analogy with section 4.3, we expand equation (4.59), using equations (4.10), (4.12).
We use the rescaled variableσ of equation (4.16), and we introduce a new unknown function
hS(σ, µ, µa), defined as follows

gS(s, µ, µa) =
{

2τ ∗(1 + sµ)hS(σ, µ, µa) (−1 < µ < 0)

2τ ∗(1 + sµ)hS(σ, µ, µa) + γ (µ, µa) (0 < µ < 1).
(4.60)

We assume thatγ (µa, µb) vanishes faster than linearly asµa or µb → 0. Using the change
of variable (4.19), we are again left with an inhomogeneous Schrödinger equation, namely

h′′
S(σ, x, xa) − σV (x)hS(σ, x, xa) =

{
−2µaδ(x + xa) (x < 0)

µaV (x)ρ(x, xa) (x > 0)
(4.61)

where we have set

γ (µ, µa) = µµaρ(x, xa) (µ = tanhx > 0, µa = tanhxa > 0). (4.62)

Now, in order to deal with the problem of the zero modes of the Schrödinger
equation (4.23), we introduce a continuousdeformation parameterκ > 0 as follows. We
consider the deformed Schrödinger equation

u′′(σ, x) − (σV (x) + κ2W(x))u(σ, x) = 0 (4.63)

with

W(x) = (1 − tanh2 x)2. (4.64)

The eigenvalues with labeln 6= 0 acquire a regularκ-dependence of the form

σn(κ) = −σ−n(κ) = σn + O(κ2) (4.65)

as well as the associated eigenfunctionsv1(κ, σn(κ), x), whereas the double degeneracy of
the zero modeσ0 = 0 is lifted into the following two exact eigenvalues and eigenfunctions
of (4.63):

σ±0(κ) = ±2κ v1(κ, σ±0(κ), x) = exp(±κ(1 − tanhx)) = exp(±κ(1 − µ)) (4.66)

with squared norms

N±0(κ) = ±e±2κ

κ

(
sinh 2κ

2κ
− cosh 2κ

)
. (4.67)

The introduction of labels±0 is consistent with settingn = 0 in formulae such as (4.36)
or (4.65), rather than with the standard arithmetics of integers!

For any non-zeroκ, the set of eigenfunctions{v1(κ, σn(κ), x)}, where the labeln runs
over the non-zero algebraic integers(n 6= 0) plus both valuesn = ±0, now spans the whole
space of bounded functionsf (x) on the real line. The difficulty of the constraint (4.37),
due to the vanishing norm of the zero mode atκ = 0, is thus cured in a natural way.

The mixed WronskianG(κ, σ ) = W {u1, v1} can still be factorized over its zeros, in
analogy with equation (4.40), namely

G(κ, σ ) = G(κ, 0)R(κ, σ )R(κ,−σ) (4.68)

with

R(κ, σ ) =
∏
n>0

(
1 + σ

σn(κ)

)
. (4.69)
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The prefactorG(κ, 0) of (4.68) is a non-trivial function ofκ. Indeed this quantity can
be viewed as the functional determinant of the Schrödinger equation (4.63) withσ = 0,
namely

u′′(σ, x) − κ2W(x)u(σ, x) = 0. (4.70)

Equation (4.70) is equivalent to the spheroidal equation studied by Meixner and
Scḧafke [35]. Some properties of this equation have been studied in detail [36], in an
investigation of nematic phases of semiflexible polymer chains. The occurrence of (4.70)
in that context is related to the Kratky–Porod description of persistent chains, mentioned in
section 4.2.

Equation (4.70) has a discrete spectrum of imaginary eigenvalues of the formκ = ±iξn

(n > 1), as shown by the semiclassical analysis of appendix B. On the other hand, the
regularity ofG(κ, σ ) at κ = 0 implies the small-κ behaviourG(κ, 0) ≈ 4κ2/3, hence

G(κ, 0) = 4κ2

3

∏
n>1

(
1 + κ2

ξ2
n

)
. (4.71)

The solution of theκ-dependent deformed inhomogeneous Schrödinger equation (4.61)
then follows the lines of section 4.3. The particular valuesx = −xa < 0 andx = 0 define
three sectors, in which we look for a solution of the following form

hS(κ, σ, x, xa) =


aS(κ, σ, xa)u1(κ, σ, x) (x < −xa)

bS(κ, σ, xa)u1(κ, σ, x) + cS(κ, σ, xa)u2(κ, σ, x) (−xa < x < 0)

dS(κ, σ, x, xa)v1(κ, σ, x) + eS(κ, σ, x, xa)v2(κ, σ, x) (x > 0).

(4.72)

The constantswhich enter the last of these expressions obey the conditions

d ′
S(κ, σ, x, xa)v1(κ, σ, x) + e′

S(κ, σ, x, xa)v2(κ, σ, x) = 0

d ′
S(κ, σ, x, xa)v

′
1(κ, σ, x) + e′

S(κ, σ, x, xa)v
′
2(κ, σ, x) = µaV (x)ρ(κ, x, xa)

(4.73)

hence

dS(κ, σ, x, xa) = dS(κ, σ,∞, xa) + µa

∫ ∞

x

v2(κ, σ, y)ρ(κ, y, xa)V (y) dy

eS(κ, σ, x, xa) = −µa

∫ ∞

x

v1(κ, σ, y)ρ(κ, y, xa)V (y) dy.

(4.74)

On the other hand, the matching of the solution (4.72) atx = −xa yields

bS(κ, σ, xa) = aS(κ, σ, xa) + 2µau2(κ, σ, xa)

cS(κ, σ, xa) = −2µau1(κ, σ, xa)
(4.75)

whereas its matching atx = 0 leads to

dS(κ, σ, 0, xa) = F(κ, −σ)bS(κ, σ, xa) − H(κ, σ )cS(κ, σ, xa)

− eS(κ, σ, 0, xa) = G(κ, σ )bS(κ, σ, xa) − F(κ, σ )cS(κ, σ, xa)
(4.76)

with the notations (4.29). We are thus left with

G(κ, σ )aS(κ, σ, xa) = −2µav1(κ, σ,−xa) − eS(κ, σ, 0, xa). (4.77)

We can now follow the approach used on equation (4.46). SinceaS(κ, σ, xa) is holomorphic
in the half-plane Reσ < 0, the zeros−σn(κ) for n > 0 of G(κ, σ ) cannot be poles of
aS(κ, σ, xa). Hence they are zeros of the right-hand side of (4.77).
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We are therefore left with the problem of findingeS(κ, σ, 0, xa), an entire function ofσ ,
from the knowledge of its values on the sequence of pointsσ = −σn(κ) (n > 0), together
with a natural assumption of minimal growth at infinity compatible with these data. This
is a generalization to an entire function of the problem of finding a polynomialQ(z) with
minimal degree, knowing its values atN points, namelyQ(zn) = Qn for 1 6 n 6 N . It is
useful to view thezn’s as the zeros of the normalized polynomial

P(z) =
∏

16n6N

(z − zn). (4.78)

The solutionQ(z) with minimal degree (genericallyN − 1) is given by the following
Lagrange interpolation formula:

Q(z) =
∑

16n6N

Qn

∏
16m6=n6N

z − zm

zn − zm

= P(z)
∑

16n6N

Qn

(z − zn)P ′(zn)
. (4.79)

Extending (4.79) to the present case of an infinite sequence of data for an unknown
entire function, we obtain

−eS(κ, σ, 0, xa) = 2µaR(κ, σ )
∑
n>0

v1(κ, −σn(κ), −xa)

(σ + σn(κ))(dR/dσ)(κ, −σn(κ))
(4.80)

or equivalently, using a generalization of the identity (C.6) toκ 6= 0, together with the
definition (4.68),

−eS(κ, σ, 0, xa) = −2µaG(κ, 0)R(κ, σ )
∑
n>0

R(κ, σn(κ))v1(κ, σn(κ), xa)

(σ + σn(κ))Nn(κ)
. (4.81)

Finally, we can derive an explicit expression forρ(κ, x, xa), by means of an inversion
formula analogous to equations (4.38), (4.39), namely

ρ(κ, x, xa) = −2G(κ, 0)
∑

m,n>0

R(κ, σm(κ))R(κ, σn(κ))

σm(κ) + σn(κ)

v1(κ, σm(κ), x)

Nm(κ)

v1(κ, σn(κ), xa)

Nn(κ)

−
∑
n>0

v1(κ, σn(κ), x)v1(κ, σn(κ), −xa) + v1(κ, σn(κ), xa)v1(κ, σn(κ), −x)

Nn(κ)
.

(4.82)

This central result is manifestly symmetric under the exchange ofx andxa, as it should be.
This symmetry property is a valuable check of the whole approach, since both argumentsx

andxa have played uneven roles throughout the derivation.
We are now able to take the physicalκ → 0 limit of the above results. In this regime

equation (4.81) can be recast as

−eS(σ, 0, xa) = 2µaP (σ)

(
1 − σ

3

∑
n>1

σnP (σn)v1(σn, xa)

(σ + σn)Nn

)
. (4.83)

First, we are now able to complete the proof of the anticipated result (4.56), (4.57), by
inserting (4.83) into (4.77), expanding the latter equation forκ → 0 to the first non-trivial
order asσ → 0, and comparing the result with the estimate

aS(σ, xa) ≈ −τ1(µa)

σ
(σ → 0). (4.84)
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Second, the small-σ expansion of (4.83) allows us to recover the sum rules (2.37), (2.41)
in the following form:∫ ∞

0
ρ(x, xa)V (x) dx = 2

∫ ∞

0
ρ(x, xa) tanhxV (x) dx = 2ν(xa)/3 − 2 tanhxa.

(4.85)

On the other hand, for large values ofσ = K2, we can use the semiclassical estimates (B.18),
(B.20), (B.22), settingσn = k2, in order to transform equations (4.74), (4.83) into∫ ∞

0
ρ(x, xa) Ai(K2/3x)x dx ≈ (2/π)K1/3

∫ ∞

0

k2/3

k2 + K2
Ai(k2/3xa) dk. (4.86)

This estimate shows thatxxaρ(x, xa) is a homogeneous function of its arguments with
degree zero, when both of them are small, i.e.xxaρ(x, xa) = g(x/xa). The rescaling
of (4.86) according toz = K2/3x = k2/3xa then yields, by means of a mere identification
of both integrands, using (B.25), the expressiong(z) = (3/π)z3/2/(z3 + 1), implying the
following scaling behaviour

ρ(xa, xb) ≈ 3(xaxb)
1/2

π(x3
a + x3

b )
(xa, xb � 1) (4.87)

or equivalently

γ (µa, µb) ≈ 3(µaµb)
3/2

π(µ3
a + µ3

b)
(µa, µb � 1). (4.88)

This novel result is in contrast with the rational behaviourγ (µa, µb) ≈ µaµb/(µa + µb)

in the case of isotropic scattering. The law (4.88) confirms the hypothesis made at the
beginning of this section, namely thatγ (µa, µb) vanishes faster than linearly in either of its
arguments. It is also worth noticing that the scaling form (4.88) of the bistatic coefficient
saturates the sum rule (2.37).

The full expression of the bistatic coefficientγ (µa, µb) is obtained by taking theκ → 0
limit of equation (4.82), using the definition (4.62). The modesm, n = 0 yield divergent
contributions asκ → 0, which cancel out as they should, as well as finite parts, so that we
are left with the result
γ (µa, µb)

µaµb

= 3τ0 + 3

2
(µa + µb) + 2

∑
n>1

P(σn)

Nn

[v1(σn, xa) + v1(σn, xb)]

−
∑
n>1

1

Nn

[v1(σn, xa)v1(σn, −xb) + v1(σn, −xa)v1(σn, xb)]

−2

3

∑
m,n>1

σmσn

σm + σn

P (σm)

Nm

P (σn)

Nn

v1(σm, xa)v1(σn, xb) (4.89)

with µa = tanhxa, µb = tanhxb.
The maximal value of the bistatic coefficient, which yields an absolute prediction for the

diffuse reflected intensity in the normal direction, readsγ (1, 1) = 4.889 703. This number
is some 15% above the corresponding one in the case of isotropic scattering (see table 2).

4.5. Extinction lengths of azimuthal excitations

Up to this point, we have mostly investigated quantities with cylindrical symmetry
around the normal to the slab, pertaining thus to them = 0 sector of the azimuthal
decomposition (2.8).
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We now want to consider briefly the other values of the azimuthal integerm, in the
regime of very anisotropic scattering. As already mentioned in section 2, all the sectors
contribute, for example, to the reflected intensity, except if the incident beam is normal to
the sample, or, more generally, has itself cylindrical symmetry. The situation is different in
transmission through thick slabs, to which only the sectorm = 0 contributes. The reason
for this is that the intensity in the other sectors is exponentially damped inside the sample,
namely

I (m) ∼ exp(−z/L
(m)
ext ) (4.90)

whereL
(m)
ext is the extinction length of the azimuthal excitations in the sectorm.

It is the purpose of this section to determine these lengths in the limit of very anisotropic
scattering. The Legendre operator in the sector defined by the azimuthal integerm is given
by equation (4.11). As a consequence, and along the lines of sections 4.3 and 4.4, we are
led to study the Schrödinger equation

u′′(σ, x) − (m2 + σV (x))u(σ, x) = 0. (4.91)

The corresponding extinction length is given by

L
(m)
ext = 2`∗

σ
(m)

0

(4.92)

whereσ
(m)

0 is the smallest positive eigenvalue of equation (4.91). This is indeed the location
of the first singularity of the Laplace transform of the intensity.

For large values of the azimuthal integerm, we can use the semiclassical
analysis developed in appendix B. The Sommerfeld quantization formula associated with
equation (4.91) reads∫ x+

x−
(−σV (x) − m2)1/2 dx =

∫ µ+

µ−

(
σ

µ

1 − µ2
− m2

(1 − µ2)2

)1/2

dµ ≈ (n + 1/2)π.

(4.93)

The smallest eigenvalueσ (m)

0 corresponds to settingn = 0 in the above formula. In first
approximation we express that the argument of the square-root inside theµ-integral in (4.93)
has zero as its maximal value, so thatµ− = µ+. We thus obtainσ (m)

0 ≈ 3
√

3m2/2. In
second approximation we expand the integrand around its maximum, which takes place for
µ ≈ √

3/3. We obtain after some algebra the following next-to-leading order estimate

σ
(m)

0 ≈ (3
√

3/2)(m2 + m
√

2) (4.94)

hence

L
(m)
ext ≈ 4`∗

3
√

3(m2 + m
√

2)
(m � 1). (4.95)

This semiclassical estimate gives accurate numbers of the whole spectrum of extinction
lengths, down to the largest one,L

(1)
ext. Indeed equation (4.95) yieldsL(1)

ext ≈ 0.318 861̀ ∗,
whereas the exact numerical value readsL

(1)
ext = 0.282 916 9̀∗.

For a large but finite anisotropy, the lengthsL
(m)
ext follow the universal law (4.95) only

for m < m∗ ∼ √
τ ∗ ∼ 1/2rms. For larger values of the azimuthal number, theL

(m)
ext become

non-universal numbers of order`. This crossover is expected on physical grounds. Indeed
large azimuthal numbersm � m∗ correspond to an angular resolutionδ2 � 2rms, so that
the details of the cross section matter in this regime.
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5. Discussion

In this paper we have considered several aspects of multiple anisotropic scattering of scalar
waves. We have considered the geometry of an optically thick slab, of thicknessL � `∗.
Our main goal has been to investigate in a quantitative way the effects of the anisotropy of
the scattering cross section, and of the internal reflections at the boundaries of the sample,
due to an optical index mismatch.

The general results derived in section 2 show that, in first approximation, quantities
only depend on the anisotropy through the transport mean free path`∗. This is especially
the case for the angle-resolved transmission through a thick slab (2.47), for the thickness
of a skin layer, z0 = τ0`

∗, and for the width (2.68) of the enhanced backscattering
cone. The present work thus confirms on a firm basis that the scaling behaviour of these
quantities is qualitatively explained within the diffusion approximation, which amounts to
only considering the long-distance diffusive character of the propagation of radiation in
a turbid medium. The scaling law in 1/`∗ of the width of the cone was derived long
ago within the diffusion approximation [31, 32]. The results of section 2.7 concerning the
dependence of the extinction length with respect toQ anda can be directly compared with
the prediction of the diffusion approximation [12]. Within this framework, all extinction
effects, provided they are small enough, can be coded in a single parameter, namely the
massM such that

M2 = q2 + i� + 1

L2
abs

(5.1)

whereq is the transverse wavevector,Labs is the absorption length, and� = (ω−ω′)/Dphys

represents the properly dimensioned contribution of a small frequency shift between the
advanced and the retarded amplitude propagators which build up thediffuson. The inverse
extinction length is then equal to the real part of the complex massM. Our results fully
agree with equation (5.1), withM ≈ s0/`, q = Q/`, andLabs as in equation (2.71).

We then investigated in detail to what extent observable quantities are universally
described by their explicit dependence on`∗ recalled above, and to what extent they still
depend on details of the scattering cross section mechanism. As recalled in the introduction,
this question is beyond the scope of the diffusion approximation, and requires a careful
treatment using the radiative transfer theory, at least in the regime` � λ0. For the diffuse
reflected or transmitted intensity, and for the width of the enhanced backscattering cone,
the detailed structure of the scattering mechanism only contributes a small effect, entirely
contained in prefactors of the laws mentioned above, such as the constantτ0, or the functions
τ1(µ) andγ (µ, µ′).

Two regimes of interest allow for more quantitative results.

(i) The regime of a large index mismatch, where the boundaries of the sample almost act
as perfect mirrors, is considered in section 3. Our results (3.9), (3.12) are identical to
those derived in [15], in the case of isotropic scattering. Therefore the quantities we
have considered do not dependat all on the scattering cross section in this regime. This
can be understood as follows. Since the thicknessz0 ≈ 4`∗/(3T ) of a skin layer is
very large, the radiation undergoes many scattering events near the boundaries before it
leaves the medium, so that the details of every single scattering event are washed out.

(ii) In the absence of internal reflections, we have considered in detail the regime of very
anisotropic scattering. In section 4 we have presented an exact analytical treatment of
the radiative transfer problem in this regime. We have obtained the results (4.50), (4.57),
(4.89) which determine the diffuse reflected and transmitted light for a thick slab. These
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results are given in terms of the eigenvalues and eigenfunctions of the one-dimensional
Schr̈odinger equations, which are accessible both numerically, via the partial-wave
expansion of appendix A, and analytically in the limit of large quantum numbers, via the
semiclassical analysis of appendix B. It isa priori possible to extend this exact treatment
to the scaling behaviour of the shape of the enhanced backscattering cone. The general
structure of the equations to be solved shows that we haveγC(Q) ≈ F(Qτ ∗), in a
whole scaling region defined byQ � 1 and τ ∗ � 1. By inserting the numerical
values of table 2 into the expansion (2.66), we get at onceF(0) = γ (1, 1) = 4.889 703
and F ′(0) = −τ1(1)2/3 = −8.801 66. The exact determination of the full scaling
function F would amount to solving a self-consistent inhomogeneous equation of the
type (4.61), albeit with the full Legendre operator instead of one-dimensional second-
order derivative. The wings of the cone, starting around values ofQ of order unity,
will depend on the details of the scattering cross section, even in the regime of very
anisotropic scattering.

Our exact treatment of the radiative transfer problem in the very anisotropic regime,
based on the expansion (4.8), is expected to be valid in the regime2rms � 1 of a broad
universality classof phase functions. Although this universality class cannot be easily
characterized, we can assert that it contains at least the phase functions scaling as

p(2) ≈ 8(2/2rms) (5.2)

such that the scaling function8 has a finite second moment. This restrictive definition
does not encompassa priori the Lorentzian-squared phase function (4.4), which has a
logarithmically divergent second moment, as already mentioned in section 4.1. The same
remark holds for the so-called Henyey–Greenstein phase function

p(2) = 1 − g2

(1 − 2g cos2 + g2)3/2
(5.3)

often used in numerical investigations [3, 17], for which the second-moment integral is
linearly divergent.

The discussion of the dependence of quantities on the details of the scattering mechanism
is summarized in table 2, where we compare the numerical values of the dimensionless
absolute prefactors of five characteristic quantities, for isotropic scattering and for very
anisotropic scattering. The relative differences, shown in the last row, are very small in
most cases. Some other quantities, such as the shape of the enhanced backscattering cone, or
the spectrum of extinction lengths of the azimuthal excitations, exhibit universal behaviour
in the very anisotropic regime only in a limited range, corresponding to a low enough
angular resolution(δ2 � 2rms), so that the details of the scattering cross section do not
matter.

Finally, we can compare our universal results in the very anisotropic scattering regime,
for some of the quantities listed in table 2, with the outcomes of numerical approaches. Van
de Hulst [3, 17] has investigated in a systematic way the dependence of various quantities
on anisotropy, for several commonly used phenomenological forms of the phase function,
including especially the Henyey–Greenstein phase function (5.3). The data on the skin-
layer thickness reported in [3] show that, as a function of anisotropy,τ0 varies from 0.7104
(isotropic scattering) to 0.7150 (moderate anisotropy), passing a minimum of 0.7092 (weak
anisotropy). The trend shown by these data suggests that our universal value 0.718 211 is
actually an absolute upper bound forτ0. Numerical data concerningτ1(1) is also available.
Van de Hulst [17] has extrapolated two series of data, concerning the Henyey–Greenstein
phase function (5.3), which admit a common limit for very anisotropic scattering(g → 1).
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According to the analysis of section 4, this limit reads in our languageτ1(1)/4 = 1.284 645,
whereas [17] gives the two slightly different estimates 1.273±0.002 and 1.274±0.007. The
agreement is satisfactory, although it cannot be entirely excluded that the observed 0.8%
relative difference can be a small but genuine non-universality effect. Indeed, as mentioned
above, the Henyey–Greenstein phase function (5.3) might not belong to the universality
class where our approach holds true. The same remark applies to a less complete set of
data [17] concerning the intensityγ (1, 1) of reflected light at normal incidence.
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Appendix A. Partial-wave expansions

In this appendix we describe a numerical algorithm based on a partial-wave expansion, that
we have used to determine the eigenvalues and eigenfunctions of the Schrödinger equations
involved in section 4.

We first consider the Schrödinger equation (4.23). Going back to theµ-variable, this
equation reads

(1(0) − σµ)v1(σ, µ) = 0 (A.1)

where1(0) is the Legendre operator in theϕ-independent sector, defined in equation (4.11).
It is natural to expand the functionv1(σ, µ) in the Legendre polynomials

v1(σ, µ) =
∑
`>0

a`(σ )P`(µ). (A.2)

Indeed these polynomials are eigenfunctions of1(0), namely

1(0)P` = −`(` + 1)P` (A.3)

and the productµP`(µ) has the following expression

(2` + 1)µP`(µ) = (` + 1)P`+1(µ) + `P`−1(µ) (A.4)

so that (A.1) amounts to the following three-term recursion relation

`(` + 1)a` + σ

(
` + 1

2` + 3
a`+1 + `

2` − 1
a`−1

)
= 0. (A.5)

Whenσ is one of the eigenvaluesσn, (A.5) has an acceptable solution{a`(σ )}, decaying
to zero for largè . The quantities needed in section 4 can then be evaluated as follows.
The normalization condition (4.25) becomes∑

`>0

a`(σn) = 1 (A.6)
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sinceP`(1) = 1. The squared normsNn of the eigenfunctions read

Nn = 4
∑
`>0

` + 1

(2` + 1)(2` + 3)
a`(σn)a`+1(σn) (A.7)

as a consequence of the normalization of the Legendre polynomials∫ 1

−1

dµ

2
Pk(µ)P`(µ) = δk,`

2` + 1
. (A.8)

Finally, the non-trivial mixed WronskiansF(±σn) read

F(−σn) = 1

F(σn)
= v1(σn, µ = −1) =

∑
`>0

(−1)`a`(σn) (A.9)

sinceP`(−1) = (−1)`.
We now consider theκ-dependent Schrödinger equation (4.64), namely

(1(0) − σµ + κ2(µ2 − 1))v1(κ, σ, µ) = 0. (A.10)

We again expand the wavefunction over the Legendre polynomials

v1(κ, σ, µ) =
∑
`>0

a`(κ, σ )P`(µ). (A.11)

By iterating (A.4) twice, we obtain the following five-term recursion

`(` + 1)a` + σ

(
` + 1

2` + 3
a`+1 + `

2` − 1
a`−1

)
− κ2

(
`(` − 1)

(2` − 1)(2` − 3)
a`−2

+ 2(1 − ` − `2)

(2` − 1)(2` + 3)
a` + (` + 1)(` + 2)

(2` + 3)(2` + 5)
a`+2

)
= 0. (A.12)

Equations (A.6), (A.7), (A.9) still hold true.
We finally consider the wave equation

(1 − σµ)v1(σ, µ, ϕ) = 0 (A.13)

where1 is the full Legendre operator, defined in (4.9). Since the potential does not involve
the azimuthal angleϕ explicitly, we look for a solutionv1 proportional to eimϕ , with m > 0
being an integer. It is now natural to expand the functionv1(σ, µ, ϕ) in the Legendre
functionsP`,m(µ), namely

v1(σ, µ, ϕ) = eimϕ
∑
`>m

a`,m(σ )P`,m(µ). (A.14)

These functions obey

1(P`,m(µ)eimϕ) = −`(` + 1)P`,m(µ)eimϕ (A.15)

and the productµP`,m(µ) has the following expression

(2` + 1)µP`,m(µ) = (` + 1 − m)P`+1,m(µ) + (` + m)P`−1,m(µ) (A.16)

so that (A.13) amounts to the three-term recursion relation

`(` + 1)a`,m + σ

(
` + m + 1

2` + 3
a`+1,m + ` − m

2` − 1
a`−1,m

)
= 0. (A.17)

The recursion equations (A.5), (A.12), (A.17) are easily implemented numerically.
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Appendix B. Semiclassical analysis

The outcomes of the semiclassical analysis presented in this appendix are used at various
places in section 4. We first consider the Schrödinger equation (4.23). For large values of
the complex parameterσ , we look for rapidly varying solutions of the form

u ≈ 8(x)−1/2 exp
∫ x

8(y) dy (B.1)

with

8(x)2 = σV (x). (B.2)

This approach is analogous to the WKB approximation in quantum mechanics, since the
conditionσ � 1 is equivalent to ¯h being small.

Because the potentialV (x) is odd, we can restrict the analysis to the domain Reσ > 0.
We introduce the notation

K = √
σ . (B.3)

Equation (B.2) has real solutions forx > 0. We set

p(x) =
√

V (x) (x > 0) (B.4)

so that8(x) = Kp(x). Equation (B.1) thus yields the basis of functions

u±(x) ≈ 1

(Kp(x))1/2
exp(±KI (x)) (B.5)

with

I (x) =
∫ ∞

x

p(y) dy (x > 0). (B.6)

The above functionsu±(x) are exponentially blowing up or decaying. The domainsx > 0
andσ > 0 (and similarlyx < 0 andσ < 0) are said to beclassically forbidden.

On the other hand, forx < 0, equation (B.2) has imaginary solutions. We set

q(x) =
√

−V (x) (x < 0) (B.7)

so that8(x) = iKq(x). Equation (B.1) thus yields the basis of functions

u±(x) ≈ 1

(Kq(x))1/2
exp(±iKI (x)) (B.8)

with

I (x) =
∫ −x

−∞
q(y) dy (x < 0). (B.9)

The above functionsu±(x) are oscillating and bounded, up to the prefactor inq(x)−1/2.
The domainsx < 0 andσ > 0 (and similarlyx > 0 andσ < 0) are said to beclassically
allowed.

The difficulty of the semiclassical analysis comes from the existence of threeturning
points, namelyx = 0 andx → ±∞, where the momentum variablep(x) or q(x) vanishes.
The estimates (B.5), (B.8) lose their meaning in the vicinity of the turning points, where a
more careful analysis is required, to be presented now.

We first investigate the basis of functions{u1, u2} for x < 0. For x → −∞ and
K → ∞, the Schr̈odinger equation (4.23) assumes the simpler form

u′′ + (2Kex)2u = 0. (B.10)



4952 E Amic et al

A basis of solutions to this equation is given by the Bessel functionsJ0(z) andN0(z), with
z = 2Kex being a scaling variable. The boundary conditions (4.24) have to match the
known small-z behaviour of the Bessel functions, hence

u1(x) ≈ J0(2Kex)

u2(x) ≈ (π/2)N0(2Kex) − (ln K + γE)J0(2Kex) (x → −∞)
(B.11)

whereγE denotes Euler’s constant. The known large-z behaviour of the Bessel functions
fixes the amplitudes of the integrals in (B.8) foru1 andu2, namely

u1(x) ≈
(

2

πKq(x)

)1/2

cos(KI (x) − π/4)

u2(x) ≈
(

2

πKq(x)

)1/2

[(π/2) sin(KI (x) − π/4) − (ln K + γE) cos(KI (x) − π/4)].

(B.12)

On the other hand, forx → 0 andK → ∞, the Schr̈odinger equation (4.23) assumes the
simpler form

u′′ + K2xu = 0 (B.13)

which is equivalent to Airy’s equation. A basis of solutions is given by the Airy functions
Ai(z) and Bi(z), with z = K2/3x being again a scaling variable. The known behaviour for
z → −∞ of the Airy functions has to match equation (B.12), hence

u1(x) ≈ 21/2K−1/3[sin(KI) Ai(K2/3x) + cos(KI) Bi(K2/3x)]

u2(x) ≈ 21/2K−1/3{(π/2)[− cos(KI) Ai(K2/3x) + sin(KI) Bi(K2/3x)]

− (ln K + γE)[sin(KI) Ai(K2/3x) + cos(KI) Bi(K2/3x)]}
(B.14)

for x → 0, with

I = I (0) =
∫ ∞

0
p(x) dx =

∫ 1

0
dµ

(
µ

1 − µ2

)1/2

=
√

π

2

0(3/4)

0(5/4)
= 1.198 140 (B.15)

this definition being consistent with equations (B.6), (B.9).
We now investigate in a similar way the functions{v1, v2} for x > 0. For x → ∞

and K → ∞, a basis of solutions is given by the modified Bessel functionsI0(z) and
K0(z), with z = 2Ke−x . The boundary conditions (4.25) have to match the known small-z

behaviour of the Bessel functions, hence

v1 ≈ I0(2Ke−x)

v2 ≈ K0(2Ke−x) + (ln K + γE)I0(2Ke−x) (x → ∞).
(B.16)

The known large-z behaviour of the Bessel functions only fixes the amplitude of the solution
u+ of (B.5) for v1 andv2, namely

v1(x) ≈
(

1

2πKp(x)

)1/2

eKI (x)

v2(x) ≈ (ln K + γE)v1(x) (x > 0).

(B.17)

Finally, the known behaviour of the Airy functions asz → ∞ yields

v1(x) ≈ 21/2K−1/3 Ai(K2/3x)eKI

v2(x) ≈ (ln K + γE)v1(x) (x → 0).
(B.18)
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The above expressions (B.14), (B.18) of both bases of solutions asx → 0 andK → ∞
allow us to derive the following semiclassical estimates for the elements of the transfer
matrix introduced in equation (4.29)

F(σ) ≈ [sin(KI) − (2/π)(ln K + γE) cos(KI)]eKI

G(σ) ≈ −(2/π) cos(KI)eKI

H(σ) ≈ (ln K + γE)F (σ)

F (−σ) ≈ (ln K + γE)G(σ) (σ = K2 → ∞).

(B.19)

The estimate forG(σ) directly yields the following expressions for its factorsP(±σ),
defined in equation (4.41):

P(σ) ≈ (3/π)1/2 eKI

K2

P(−σ) ≈ −2(3/π)1/2 cos(KI)

K2
(σ = K2 → ∞).

(B.20)

We also obtain from (B.19) an estimate of the eigenvaluesσn = K2
n , which are the

zeros ofG(σ), in the form

Kn ≈ (n + 1/2)
π

I
(n � 1). (B.21)

This semiclassical formula gives a very accurate description of the whole spectrum of the
Schr̈odinger equation (4.23). Indeed the relative error is maximal for the first non-zero
eigenvalue, for which (B.21) predictsK1 ≈ 3.933 086, i.e. some 3.2% above the exact
numerical valueK1 = 3.811 562.

The semiclassical expression of the squared normsNn can be evaluated by inserting the
estimates (B.19) into the identity (C.6). We thus obtain

Nn ≈ − I

πKn

e2KnI (n � 1). (B.22)

In section 4 we also need the expression of the Mellin transform of the Airy function
Ai(x), namely

m(s) =
∫ ∞

0
xs Ai(x) dx (Res > −1) (B.23)

which we have not found in standard handbooks. The Airy equation implies the functional
equation

m(s + 3) = (s + 1)(s + 2)m(s) (B.24)

whose correctly normalized solution is

m(s) = 3−s/3 0(s)

0(s/3)
. (B.25)

We now consider the deformed Schrödinger equation (4.63), where bothσ and κ are
non-zero. It turns out that only the spectrum of that wave equation will be needed. Hence
we can content ourselves with the Sommerfeld quantization formula. A similar treatment
is used in section 4.5 for the full Legendre operator.

The Sommerfeld formula reads∫ x+

x−
(−σV (x) − κ2W(x))1/2 dx =

∫ µ+

µ−

(
σ

µ

1 − µ2
− κ2

)1/2

dµ ≈ (n + 1/2)π

(B.26)
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the integral being extended over the classically allowed domain, where the square root is
real.

The implicit equation (B.26) for the semiclassical estimate of the eigenvalues±σn(κ)

can be investigated in several limiting cases of interest. For small values ofκ, the integrand
can be expanded in a straightforward way. We thus obtain

σn(κ)1/2 ≈ Kn(κ) = (n + 1/2)
π

I

(
1 + 2κ2

3π(n + 1/2)2
+ · · ·

)
(n � 1, κ � 1).

(B.27)

This expression confirms the general result (4.65). On the other hand, forσ = 0, it can be
deduced from equation (B.26) that the spheroidal equation (4.70) has imaginary eigenvalues
of the formκ = ±iξn, asymptotically given by the semiclassical estimate

ξn ≈ (n + 1/2)π/2 (n � 1). (B.28)

Appendix C. Useful identities on the mixed Wronskians

In this appendix, we derive the identity (C.6) used in section 4, and more generally we
give alternative expressions for the derivatives with respect to the spectral variableσ of the
mixed WronskiansF(σ), G(σ) andH(σ), which enter the transfer matrix (4.29).

To do so, we start by considering the derivatives

Uα(σ, x) = ∂uα(σ, x)

∂σ
(α = 1, 2) (C.1)

which obey the inhomogeneous Schrödinger equation

U ′′
α (σ, x) − σV (x)Uα(σ, x) = V (x)uα(σ, x) (α = 1, 2). (C.2)

These equations can be solved explicitly byvarying the constants, along the lines of
sections 4.3 and 4.4. We thus obtain

U1(σ, x) = −u1(σ, x)

∫ x

−∞
u1(σ, y)u2(σ, y)V (y) dy + u2(σ, x)

∫ x

−∞
u2

1(σ, y)V (y) dy

U2(σ, x) = −u1(σ, x)

∫ x

−∞
u2

2(σ, y)V (y) dy + u2(σ, x)

∫ x

−∞
u1(σ, y)u2(σ, y)V (y) dy.

(C.3)

By taking the x → ∞ limit of the above expressions, and using the asymptotic
behaviour (4.30), we get the following expressions

dF(σ)

dσ
= G(σ)N22(σ ) + F(σ)N12(σ )

dG(σ)

dσ
= −F(σ)N11(σ ) − G(σ)N12(σ )

dH(σ)

dσ
= −F(σ)N11(σ ) − G(σ)N12(σ )

dF(−σ)

dσ
= −F(−σ)N12(σ ) − H(σ)N11(σ )

(C.4)

with the definition

Nαβ(σ ) =
∫ ∞

−∞
uα(σ, x)uβ(σ, x)V (x) dx (α, β = 1, 2). (C.5)
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On the spectrum, i.e. forσ = σn, we haveG(σn) = 0, by definition. Furthermore,
equation (4.34) impliesN11(σn) = Nn/F

2(σn), hence the identity(
dG(σ)

dσ

)
σ=σn

= − Nn

F(σn)
= −NnF(−σn) (C.6)

with Nn being the squared norm of the eigenfunctionv1(σn, x), defined in equation (4.35).
The identity (C.6) is very general. It also holds for theκ-dependent Schrödinger
equation (4.63).
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