10,930 research outputs found
Mass Uncertainties of f0(600) and f0(1370) and their Effects on Determination of the Quark and Glueball Admixtures of the I=0 Scalar Mesons
Within a nonlinear chiral Lagrangian framework the correlations between the
quark and glueball admixtures of the isosinglet scalar mesons below 2 GeV and
the current large uncertainties on the mass of the f0(600) and the f0(1370) are
studied. The framework is formulated in terms of two scalar meson nonets (a
two-quark nonet and a four-quark nonet) together with a scalar glueball. It is
shown that while some properties of these states are sensitive to the mass of
f0(600) and f0(1370), several relatively robust conclusions can be made: The
f0(600), the f0(980), and the f0(1370) are admixtures of two and four quark
components, with f0(600) being dominantly a non-strange four-quark state, and
f0(980) and f0(1370) having a dominant two-quark component. Similarly, the
f0(1500) and the f0(1710) have considerable two and four quark admixtures, but
in addition have a large glueball component. For each state, a detailed
analysis providing the numerical estimates of all components is given. It is
also shown that this framework clearly favors the experimental values:
m[f0(600)] < 700 MeV and m[f0(1370)] = 1300-1450 MeV. Moreover, an overall fit
to the available data shows a reciprocal substructure for the f0(600) and the
f0(1370), and a linear correlation between their masses of the form m
[f0(1370)] = 0.29 m[f0(600)] + 1.22 GeV. The scalar glueball mass of 1.5-1.7
GeV is found in this analysis.Comment: placement of figures inside text improved. Content unchange
Coulomb blockade and Kondo effect in the electronic structure of Hubbard molecules connected to metallic leads: a finite-temperature exact-diagonalization study
The electronic structure of small Hubbard molecules coupled between two
non-interacting semi-infinite leads is studied in the low bias-voltage limit.
To calculate the finite-temperature Green's function of the system, each lead
is simulated by a small cluster, so that the problem is reduced to that of a
finite-size system comprising the molecule and clusters on both sides. The
Hamiltonian parameters of the lead clusters are chosen such that their
embedding potentials coincide with those of the semi-infinite leads on
Matsubara frequencies. Exact diagonalization is used to evaluate the effect of
Coulomb correlations on the electronic properties of the molecule at finite
temperature. Depending on key Hamiltonian parameters, such as Coulomb
repulsion, one-electron hopping within the molecule, and hybridization between
molecule and leads, the molecular self-energy is shown to exhibit Fermi-liquid
behavior or deviations associated with finite low-energy scattering rates. The
method is shown to be sufficiently accurate to describe the formation of Kondo
resonances inside the correlation-induced pseudogaps, except in the limit of
extremely low temperatures. These results demonstrate how the system can be
tuned between the Coulomb blockade and Kondo regimes.Comment: 14 pages; 14 figure
Evidence for Strong-coupling S-wave Superconductivity in MgB2 :11B NMR Study
We have investigated a gap structure in a newly-discovered superconductor,
MgB2 through the measurement of 11B nuclear spin-lattice relaxation rate,
^{11}(1/T_1). ^{11}(1/T_1) is proportional to the temperature (T) in the normal
state, and decreases exponentially in the superconducting (SC) state, revealing
a tiny coherence peak just below T_c. The T dependence of 1/T_1 in the SC state
can be accounted for by an s-wave SC model with a large gap size of 2\Delta
/k_BT_c \sim 5 which suggests to be in a strong-coupling regime.Comment: 2 pages with 1 figur
Superconducting anisotropy and evidence for intrinsic pinning in single crystalline MgB
We examine the superconducting anisotropy
of a metallic high- superconductor MgB by measuring the magnetic
torque of a single crystal. The anisotropy does not depend
sensitively on the applied magnetic field at 10 K. We obtain the anisotropy
parameter . The torque curve shows the sharp
hysteresis peak when the field is applied parallel to the boron layers. This
comes from the intrinsic pinning and is experimental evidence for the
occurrence of superconductivity in the boron layers.Comment: REVTeX 4, To be published in Physical Review
A chiral model for bar{q}q and bar{q}bar{q}qq$ mesons
We point out that the spectrum of pseudoscalar and scalar mesons exhibits a
cuasi-degenerate chiral nonet in the energy region around 1.4 GeV whose scalar
component has a slightly inverted spectrum. Based on the empirical linear
rising of the mass of a hadron with the number of constituent quarks which
yields a mass around GeV for tetraquarks, we conjecture that this
cuasi-chiral nonet arises from the mixing of a chiral nonet composed of
tetraquarks with conventional bar{q}q states. We explore this possibility in
the framework of a chiral model assuming a tetraquark chiral nonet around 1.4
GeV with chiral symmetry realized directly. We stress that U_{A}(1)
transformations can distinguish bar{q}q from tetraquark states, although it
cannot distinguish specific dynamics in the later case. We find that the
measured spectrum is consistent with this picture. In general, pseudoscalar
states arise as mainly bar{q}q states but scalar states turn out to be strong
admixtures of bar{q}q and tetraquark states. We work out also the model
predictions for the most relevant couplings and calculate explicitly the strong
decays of the a_{0}(1450) and K_{0}^*(1430) mesons. From the comparison of some
of the predicted couplings with the experimental ones we conclude that
observable for the isovector and isospinor sectors are consistently described
within the model. The proper description of couplings in the isoscalar sectors
would require the introduction of glueball fields which is an important missing
piece in the present model.Comment: 20 pages, 3 figure
Breaking the color-reddening degeneracy in type Ia supernovae
A new method to study the intrinsic color and luminosity of type Ia
supernovae (SNe Ia) is presented. A metric space built using principal
component analysis (PCA) on spectral series SNe Ia between -12.5 and +17.5 days
from B maximum is used as a set of predictors. This metric space is built to be
insensitive to reddening. Hence, it does not predict the part of color excess
due to dust-extinction. At the same time, the rich variability of SN Ia spectra
is a good predictor of a large fraction of the intrinsic color variability.
Such metric space is a good predictor of the epoch when the maximum in the B-V
color curve is reached. Multivariate Partial Least Square (PLS) regression
predicts the intrinsic B band light-curve and the intrinsic B-V color curve up
to a month after maximum. This allows to study the relation between the light
curves of SNe Ia and their spectra. The total-to-selective extinction ratio RV
in the host-galaxy of SNe Ia is found, on average, to be consistent with
typical Milky-Way values. This analysis shows the importance of collecting
spectra to study SNe Ia, even with large sample publicly available. Future
automated surveys as LSST will provide a large number of light curves. The
analysis shows that observing accompaning spectra for a significative number of
SNe will be important even in the case of "normal" SNe Ia.Comment: 11 pages, 11 figure
Locality and nonlocality in quantum pure-state identification problems
Suppose we want to identify an input state with one of two unknown reference
states, where the input state is guaranteed to be equal to one of the reference
states. We assume that no classical knowledge of the reference states is given,
but a certain number of copies of them are available instead. Two reference
states are independently and randomly chosen from the state space in a unitary
invariant way. This is called the quantum state identification problem, and the
task is to optimize the mean identification success probability. In this paper,
we consider the case where each reference state is pure and bipartite, and
generally entangled. The question is whether the maximum mean identification
success probability can be attained by means of a local operations and
classical communication (LOCC) measurement scheme. Two types of identification
problems are considered when a single copy of each reference state is
available. We show that a LOCC scheme attains the globally achievable
identification probability in the minimum-error identification problem. In the
unambiguous identification problem, however, the maximal success probability by
means of LOCC is shown to be less than the globally achievable identification
probability.Comment: 11 pages, amalgamation of arXiv:0712.2906 and arXiv:0801.012
Magnetic and superconducting properties on S-type single-crystal CeCuSi probed by Cu nuclear magnetic resonance and nuclear quadrupole resonance
We have performed Cu nuclear magnetic resonance/nuclear quadrupole
resonance measurements to investigate the magnetic and superconducting (SC)
properties on a "superconductivity dominant" (-type) single crystal of
CeCuSi. Although the development of antiferromagnetic (AFM)
fluctuations down to 1~K indicated that the AFM criticality was close, Korringa
behavior was observed below 0.8~K, and no magnetic anomaly was observed above
0.6 K. These behaviors were expected in -type
CeCuSi. The temperature dependence of the nuclear spin-lattice
relaxation rate at zero field was almost identical to that in the
previous polycrystalline samples down to 130~mK, but the temperature dependence
deviated downward below 120~mK. In fact, in the SC state could be
fitted with the two-gap -wave rather than the two-gap -wave
model down to 90~mK. Under magnetic fields, the spin susceptibility in both
directions clearly decreased below , indicative of the formation of
spin singlet pairing. The residual part of the spin susceptibility was
understood by the field-induced residual density of states evaluated from
, which was ascribed to the effect of the vortex cores. No magnetic
anomaly was observed above the upper critical field , but the
development of AFM fluctuations was observed, indicating that superconductivity
was realized in strong AFM fluctuations.Comment: 10 pages, 8 figure
- …
