72 research outputs found

    Comparison Of Dimensional Stability Of Particle Boards Manufactured In Tanzania And Those Imported From South Africa

    Get PDF
    Dimensional stability properties of particleboard from Tembo Chipboard Ltd, located in Tanga, Tanzania and of those imported from South Africa were determined and compared. A total of 64 test samples, 32 from Tembo Chipboard Ltd and 32 from South Africa chipboard cut randomly from boards were used for the study. Prior to the determination of the dimensional stability, moisture content and basic density of boards were determined in accordance to EN 322 and EN 323 standards respectively. Determination of dimensional stability was based on water soak test, according to EN 317 standard. From the results, the basic densities of particleboard from Tembo Chipboard Ltd and those from South Africa were very similar at 687 and 671 kg/m3 respectively. Similarities in basic densities allowed for comparison of other properties. Thickness swelling and water absorption values of chipboards from Tembo Chipboard Ltd and S. Africa increased with increase in water immersion period. Comparatively, boards from Tembo Chipboard Ltd had lower thickness swelling and water absorption than boards from South Africa. Furthermore, less board damage due to water immersion was demonstrated by boards from Tembo Chipboard Ltd than those from S. Africa due to their low irreversible thickness swelling. The particleboards from Tembo Chipboard Ltd are more dimensionally stable than similar boards from S. Africa. TJFNC Vol. 75 2004: pp. 54-6

    Business constraints and growth potential of micro and small manufacturing enterprises in Uganda

    Get PDF
    Ugandan micro and small enterprises (MSEs) still perform poorly. Studies associating poor performance of manufacturers with lack of finance and low investment ignore micro enterprises. Those focusing on MSEs are either exploratory in nature or employ a descriptive analysis, which cannot show the extent to which business constraints explain the performance of MSEs. Thus, this paper tries to examine the extent to which the growth of MSEs is associated with business constraints while controlling for owners’ attributes and firms’ characteristics. The results reveal that MSEs’ growth potential is negatively associated with limited access to productive resources (finance and business development services), high taxes and lack of market access

    Accuracy of Malaria Rapid Diagnostic Tests in Community Studies and their Impact on Treatment of Malaria in an Area with Declining Malaria Burden in North-Eastern Tanzania.

    Get PDF
    Despite some problems related to accuracy and applicability of malaria rapid diagnostic tests (RDTs), they are currently the best option in areas with limited laboratory services for improving case management through parasitological diagnosis and reducing over-treatment. This study was conducted in areas with declining malaria burden to assess; 1) the accuracy of RDTs when used at different community settings, 2) the impact of using RDTs on anti-malarial dispensing by community-owned resource persons (CORPs) and 3) adherence of CORPs to treatment guidelines by providing treatment based on RDT results. Data were obtained from: 1) a longitudinal study of passive case detection of fevers using CORPs in six villages in Korogwe; and 2) cross-sectional surveys (CSS) in six villages of Korogwe and Muheza districts, north-eastern, Tanzania. Performance of RDTs was compared with microscopy as a gold standard, and factors affecting their accuracy were explored using a multivariate logistic regression model. Overall sensitivity and specificity of RDTs in the longitudinal study (of 23,793 febrile cases; 18,154 with microscopy and RDTs results) were 88.6% and 88.2%, respectively. In the CSS, the sensitivity was significantly lower (63.4%; χ2=367.7, p<0.001), while the specificity was significantly higher (94.3%; χ2=143.1, p<0.001) when compared to the longitudinal study. As determinants of sensitivity of RDTs in both studies, parasite density of<200 asexual parasites/μl was significantly associated with high risk of false negative RDTs (OR≥16.60, p<0.001), while the risk of false negative test was significantly lower among cases with fever (axillary temperature ≥37.5 °C) (OR≤0.63, p≤0.027). The risk of false positive RDT (as a determinant of specificity) was significantly higher in cases with fever compared to afebrile cases (OR≥2.40, p<0.001). Using RDTs reduced anti-malarials dispensing from 98.9% to 32.1% in cases aged ≥5 years. Although RDTs had low sensitivity and specificity, which varied widely depending on fever and parasite density, using RDTs reduced over-treatment with anti-malarials significantly. Thus, with declining malaria prevalence, RDTs will potentially identify majority of febrile cases with parasites and lead to improved management of malaria and non-malaria fevers

    Using rapid diagnostic tests as source of malaria parasite DNA for molecular analyses in the era of declining malaria prevalence

    Get PDF
    BACKGROUND: Malaria prevalence has recently declined markedly in many parts of Tanzania and other sub-Saharan African countries due to scaling-up of control interventions including more efficient treatment regimens (e.g. artemisinin-based combination therapy) and insecticide-treated bed nets. Although continued molecular surveillance of malaria parasites is important to early identify emerging anti-malarial drug resistance, it is becoming increasingly difficult to obtain parasite samples from ongoing studies, such as routine drug efficacy trials. To explore other sources of parasite DNA, this study was conducted to examine if sufficient DNA could be successfully extracted from malaria rapid diagnostic tests (RDTs), used and collected as part of routine case management services in health facilities, and thus forming the basis for molecular analyses, surveillance and quality control (QC) testing of RDTs. METHODS: One hyper-parasitaemic blood sample (131,260 asexual parasites/μl) was serially diluted in triplicates with whole blood and blotted on RDTs. DNA was extracted from the RDT dilution series, either immediately or after storage for one month at room temperature. The extracted DNA was amplified using a nested PCR method for Plasmodium species detection. Additionally, 165 archived RDTs obtained from ongoing malaria studies were analysed to determine the amplification success and test applicability of RDT for QC testing. RESULTS: DNA was successfully extracted and amplified from the three sets of RDT dilution series and the minimum detection limit of PCR was <1 asexual parasite/μl. DNA was also successfully amplified from (1) 70/71 (98.6%) archived positive RDTs (RDTs and microscopy positive) (2) 52/63 (82.5%) false negative RDTs (negative by RDTs but positive by microscopy) and (3) 4/24 (16.7%) false positive RDTs (positive by RDTs but negative by microscopy). Finally, 7(100%) negative RDTs (negative by RDTs and microscopy) were also negative by PCR. CONCLUSION: This study showed that DNA extracted from archived RDTs can be successfully amplified by PCR and used for detection of malaria parasites. Since Tanzania is planning to introduce RDTs in all health facilities (and possibly also at community level), availability of archived RDTs will provide an alternative source of DNA for genetic studies such as continued surveillance of parasite resistance to anti-malarial drugs. The DNA obtained from RDTs can also be used for QC testing by detecting malaria parasites using PCR in places without facilities for microscopy

    Declining Burden of Malaria Over two Decades in a Rural Community of Muheza District, North-Eastern Tanzania.

    Get PDF
    The recently reported declining burden of malaria in some African countries has been attributed to scaling-up of different interventions although in some areas, these changes started before implementation of major interventions. This study assessed the long-term trends of malaria burden for 20 years (1992--2012) in Magoda and for 15 years in Mpapayu village of Muheza district, north-eastern Tanzania, in relation to different interventions as well as changing national malaria control policies.\ud Repeated cross-sectional surveys recruited individuals aged 0 -- 19 years from the two villages whereby blood smears were collected for detection of malaria parasites by microscopy. Prevalence of Plasmodium falciparum infections and other indices of malaria burden (prevalence of anaemia, splenomegaly and gametocytes) were compared across the years and between the study villages. Major interventions deployed including mobile clinic, bed nets and other research activities, and changes in national malaria control policies were also marked. In Magoda, the prevalence of P. falciparum infections initially decreased between 1992 and 1996 (from 83.5 to 62.0%), stabilized between 1996 and 1997, and further declined to 34.4% in 2004. A temporary increase between 2004 and 2008 was followed by a progressive decline to 7.2% in 2012, which is more than 10-fold decrease since 1992. In Mpapayu (from 1998), the highest prevalence was 81.5% in 1999 and it decreased to 25% in 2004. After a slight increase in 2008, a steady decline followed, reaching <5% from 2011 onwards. Bed net usage was high in both villages from 1999 to 2004 (>=88%) but it decreased between 2008 and 2012 (range, 28% - 68%). After adjusting for the effects of bed nets, age, fever and year of study, the risk of P. falciparum infections decreased significantly by >=97% in both villages between 1999 and 2012 (p < 0.001). The prevalence of splenomegaly (>40% to <1%) and gametocytes (23% to <1%) also decreased in both villages.Discussion and conclusionsA remarkable decline in the burden of malaria occurred between 1992 and 2012 and the initial decline (1992 -- 2004) was most likely due to deployment of interventions, such as bed nets, and better services through research activities. Apart from changes of drug policies, the steady decline observed from 2008 occurred when bed net coverage was low suggesting that other factors contributed to the most recent pattern. These results suggest that continued monitoring is required to determine causes of the changing malaria epidemiology and also to monitor the progress towards maintaining low malaria transmission and reaching related millennium development goals

    Potential opportunities and challenges of deploying next generation sequencing and CRISPR-cas systems to support diagnostics and surveillance towards malaria control and elimination in Africa

    Get PDF
    Recent developments in molecular biology and genomics have revolutionized biology and medicine mainly in the developed world. The application of next generation sequencing (NGS) and CRISPR-Cas tools is now poised to support endemic countries in the detection, monitoring and control of endemic diseases and future epidemics, as well as with emerging and re-emerging pathogens. Most low and middle income countries (LMICs) with the highest burden of infectious diseases still largely lack the capacity to generate and perform bioinformatic analysis of genomic data. These countries have also not deployed tools based on CRISPR-Cas technologies. For LMICs including Tanzania, it is critical to focus not only on the process of generation and analysis of data generated using such tools, but also on the utilization of the findings for policy and decision making. Here we discuss the promise and challenges of NGS and CRISPR-Cas in the context of malaria as Africa moves towards malaria elimination. These innovative tools are urgently needed to strengthen the current diagnostic and surveillance systems. We discuss ongoing efforts to deploy these tools for malaria detection and molecular surveillance highlighting potential opportunities presented by these innovative technologies as well as challenges in adopting them. Their deployment will also offer an opportunity to broadly build in-country capacity in pathogen genomics and bioinformatics, and to effectively engage with multiple stakeholders as well as policy makers, overcoming current workforce and infrastructure challenges. Overall, these ongoing initiatives will build the malaria molecular surveillance capacity of African researchers and their institutions, and allow them to generate genomics data and perform bioinformatics analysis in-country in order to provide critical information that will be used for real-time policy and decision-making to support malaria elimination on the continent

    Reliability of Rapid Diagnostic Tests in Diagnosing Pregnancy-Associated Malaria in North-Eastern Tanzania.

    Get PDF
    Accurate diagnosis and prompt treatment of pregnancy-associated malaria (PAM) are key aspects in averting adverse pregnancy outcomes. Microscopy is the gold standard in malaria diagnosis, but it has limited detection and availability. When used appropriately, rapid diagnostic tests (RDTs) could be an ideal diagnostic complement to microscopy, due to their ease of use and adequate sensitivity in detecting even sub-microscopic infections. Polymerase chain reaction (PCR) is even more sensitive, but it is mainly used for research purposes. The accuracy and reliability of RDTs in diagnosing PAM was evaluated using microscopy and PCR. A cohort of pregnant women in north-eastern Tanzania was followed throughout pregnancy for detection of plasmodial infection using venous and placental blood samples evaluated by histidine rich protein 2 (HRP-2) and parasite lactate dehydrogenase (pLDH) based RDTs (Parascreen™) or HRP-2 only (Paracheck Pf® and ParaHIT®f), microscopy and nested Plasmodium species diagnostic PCR. From a cohort of 924 pregnant women who completed the follow up, complete RDT and microscopy data was available for 5,555 blood samples and of these 442 samples were analysed by PCR. Of the 5,555 blood samples, 49 ((proportion and 95% confidence interval) 0.9% [0.7 -1.1]) samples were positive by microscopy and 91 (1.6% [1.3-2.0]) by RDT. Forty-six (50.5% [40.5 - 60.6]) and 45 (49.5% [39.4 - 59.5]) of the RDT positive samples were positive and negative by microscopy, respectively, whereas nineteen (42.2% [29.0 - 56.7]) of the microscopy negative, but RDT positive, samples were positive by PCR. Three (0.05% [0.02 - 0.2]) samples were positive by microscopy but negative by RDT. 351 of the 5,461 samples negative by both RDT and microscopy were tested by PCR and found negative. There was no statistically significant difference between the performances of the different RDTs. Microscopy underestimated the real burden of malaria during pregnancy and RDTs performed better than microscopy in diagnosing PAM. In areas where intermittent preventive treatment during pregnancy may be abandoned due to low and decreasing malaria risk and instead replaced with active case management, screening with RDT is likely to identify most infections in pregnant women and out-performs microscopy as a diagnostic tool

    Evaluating the Route of Antibiotic Administration and its Effect on Nursery Pig Growth Performance

    Get PDF
    This experiment was conducted to determine the influence of the route of antibiotic administration (in-feed vs. in-water) on nursery pig growth performance. A total of 2,592 pigs (L337 × 1050, PIC Hendersonville, TN; initially 14.5 lb) were used in a 28-d trial. Pigs were weaned at 21 d of age and placed in a commercial research facility with 27 pigs per pen. After a 7-d pre-trial period, pens of pigs were assigned to weight blocks in a randomized complete block design. There were 12 replications per treat­ment with pen as experimental unit for in-feed medication treatments and a pair of pens as the experimental unit for water medication treatments. The six treatments included a control (no medication), chlortetracycline (CTC) provided via feed or water to achieve 9.98 mg/lb body weight (BW), tiamulin in feed (2.27 mg/lb BW) or water (10.43 mg/lb BW), or a combination of CTC and tiamulin in feed. Experimental treat­ments were provided for 14-d followed by a 14-d period without medication. For statis­tical analysis, the interaction of antibiotic type × route of administration was tested in a 2 × 2 factorial with main effect of antibiotic type (CTC or tiamulin) and route of administration (in-feed or in-water). Pairwise comparisons were also made between the control and all individual treatments. From d 0 to 14 (P \u3c 0.05), d 14 to 28 (P \u3c 0.10), and d 0 to 28 (P \u3c 0.05) there was an antibiotic × route of administration interac­tion observed for average daily gain (ADG). The interactions were a result of pigs fed diets containing CTC having improved (P \u3c 0.05) ADG compared to CTC in-water, whereas pigs provided tiamulin in-water exhibited improved ADG compared with tiamulin in feed. There was an antibiotic × route of administration interaction observed for feed-to-gain ratio (F/G) from d 0 to 14 and 0 to 28. Pigs provided tiamulin in the feed had the poorest F/G, whereas F/G was not different among the other treatments. Providing CTC in the feed or water or tiamulin in the water improved (P \u3c 0.05) ADG compared to pigs fed the control diet. Providing either CTC or tiamulin in the feed increased (P \u3c 0.05) average daily feed intake (ADFI) as compared with providing the antibiotics in water. Pigs fed antibiotics in the feed had increased (P \u3c 0.05) ADFI compared to the control with those provided antibiotics in the water being margin­ally greater (P \u3c 0.10) in ADFI than the control. For ADG (d 0 to 28), pigs provided CTC in feed, tiamulin in the water, or the combination of CTC and tiamulin in the feed during the treatment period had increased ADG (P \u3c 0.05) compared to pigs fed the control diet. For ADFI, there was no evidence of an interaction or main effects; however, when compared to the control, pigs provided CTC in-feed, tiamulin in-water, or the combination in the feed all had increased ADFI. In summary, providing CTC in feed with or without tiamulin or tiamulin in the water improved nursery pig growth performance
    corecore