298 research outputs found

    Theoretical Investigation of Local Electron Temperature in Quantum Hall Systems

    Full text link
    In this work we solve thermo-hydrodynamical equations considering a two dimensional electron system in the integer quantum Hall regime, to calculate the spatial distribution of the local electron temperature. We start from the self-consistently calculated electrostatic and electrochemical potentials in equilibrium. Next, by imposing an external current, we investigate the variations of the electron temperature in the linear-response regime. Here a local relation between the electron density and conductivity tensor elements is assumed. Following the Ohm's law we obtain local current densities and by implementing the results of the thermo-hydrodynamical theory, calculate the local electron temperature. We observe that the local electron temperature strongly depends on the formation of compressible and incompressible strips.Comment: 10 pages, 4 figure

    Electrolytic depletion interactions

    Full text link
    We consider the interactions between two uncharged planar macroscopic surfaces immersed in an electrolyte solution which are induced by interfacial selectivity. These forces are taken into account by introducing a depletion free-energy density functional, in addition to the usual mean-field Poisson-Boltzmann functional. The minimization of the total free-energy functional yields the density profiles of the microions and the electrostatic potential. The disjoining pressure is obtained by differentiation of the total free energy with respect to the separation of the surfaces, holding the range and strength of the depletion forces constant. We find that the induced interaction between the two surfaces is always repulsive for sufficiently large separations, and becomes attractive at shorter separations. The nature of the induced interactions changes from attractive to repulsive at a distance corresponding to the range of the depletion forces.Comment: 17 pages, 4 Postscript figures, submitted to Physical Review

    Thermohydrodynamics in Quantum Hall Systems

    Full text link
    A theory of thermohydrodynamics in two-dimensional electron systems in quantizing magnetic fields is developed including a nonlinear transport regime. Spatio-temporal variations of the electron temperature and the chemical potential in the local equilibrium are described by the equations of conservation with the number and thermal-energy flux densities. A model of these flux densities due to hopping and drift processes is introduced for a random potential varying slowly compared to both the magnetic length and the phase coherence length. The flux measured in the standard transport experiment is derived and is used to define a transport component of the flux density. The equations of conservation can be written in terms of the transport component only. As an illustration, the theory is applied to the Ettingshausen effect, in which a one-dimensional spatial variation of the electron temperature is produced perpendicular to the current.Comment: 10 pages, 1 figur

    The comparative anatomy of the folds, fossae, and adhesions around the duodenojejunal flexure in mammals

    Get PDF
    Background: Anatomical knowledge of the duodenojejunal flexure is necessary for abdominal surgeries, and also important for physiologic studies about the duodenum. But little is known about the anatomy of this region in mammals. Here, we examined comparative anatomy to understand the anatomical formation of the duodenojejunal flexure in mammals. Materials and methods: The areas around the duonenojejunal flexure were ob­served in mouse, rat, dog, pig, and human, and the anatomical structures around the duodenojejunal junction in the animals were compared with those in human. Results: The superior and inferior duodenal folds, and the superior and inferior duodenal fossae were identified in all examined humans. In pig, the structures were not clearly identified because the duodenum strongly adhered to the retroperitoneum and to the mesocolon. In mouse, rat, and dog, only the plica duodenocolica, which is regarded as the animal counterpart of the superior duo­denal fold in human, was identified, and other folds or fossae were not observed, probably because the duodenum was not fixed to the parietal peritoneum in those animals. Transection of the plica duodenocolica could return the normally rotated intestine back to the state of non-rotation in rat. Conclusions: This study showed the anatomical similarities and dissimilarities of the duodenojejunal flexure among the mammals. Anatomical knowledge of the area is useful for duodenal and pancreatic surgeries, and for animal studies about the duodenum. (Folia Morphol 2018; 77, 2: 286–292

    A Metastatic Jejunal Tumor from Squamous Cell Carcinoma of the Lung Found in an Intestinal Perforation

    Get PDF
    An 85-year-old male with advanced squamous cell carcinoma of the lung, who was diagnosed about 10 years prior to his current presentation, suddenly complained of abdominal pain and underwent an abdominal computed tomography scan, which revealed free air and massive ascites. He was admitted to our hospital for acute peritonitis and emergency surgery was performed. During the surgical procedure, a perforation of the jejunum was diagnosed and repaired. He was diagnosed to have a metastatic tumor originating from a squamous cell carcinoma of the lung. He improved and was transferred to the former hospital on the 27th postoperative day. Jejunal metastasis from squamous cell carcinoma of the lung is rare, and the prognosis of peritonitis due to a perforated intestinal metastasis from lung cancer is poor. There have been 10 reports of jejunal metastasis of squamous cell carcinoma of the lung reported in Japan between 2000 and 2011. Therefore, when patients with advanced lung cancer present with acute abdomen, it is necessary to keep in mind the possibility of a gastrointestinal metastatic tumor

    Atmospheric oxygenation caused by a change in volcanic degassing pressure

    Get PDF
    International audienceThe Precambrian history of our planet is marked by two major events: a pulse of continental crust formation at the end of the Archaean eon and a weak oxygenation of the atmosphere (the Great Oxidation Event) that followed, at 2.45 billion years ago. This oxygenation has been linked to the emergence of oxygenic cyanobacteria1,2 and to changes in the compositions of volcanic gases3,4, but not to the composition of erupting lavas--geochemical constraints indicate that the oxidation state of basalts and their mantle sources has remained constant since 3.5 billion years ago5,6. Here we propose that a decrease in the average pressure of volcanic degassing changed the oxidation state of sulphur in volcanic gases, initiating themodern biogeochemical sulphur cycle and triggering atmospheric oxygenation. Using thermodynamic calculations simulating gas-melt equilibria in erupting magmas, we suggest that mostly submarine Archaean volcanoes produced gases with SO2/H2S,1 and low sulphur content. Emergence of the continents due to a global decrease in sea level and growth of the continental crust in the late Archaean then led to widespread subaerial volcanism, which in turn yielded gases much richer in sulphur and dominated bySO2. Dissolution of sulphur in sea water and the onset of sulphate reduction processes could then oxidize the atmosphere

    Airway smooth muscle relaxation results from a reduction in the frequency of Ca(2+ )oscillations induced by a cAMP-mediated inhibition of the IP(3 )receptor

    Get PDF
    BACKGROUND: It has been shown that the contractile state of airway smooth muscle cells (SMCs) in response to agonists is determined by the frequency of Ca(2+ )oscillations occurring within the SMCs. Therefore, we hypothesized that the relaxation of airway SMCs induced by agents that increase cAMP results from the down-regulation or slowing of the frequency of the Ca(2+ )oscillations. METHODS: The effects of isoproterenol (ISO), forskolin (FSK) and 8-bromo-cAMP on the relaxation and Ca(2+ )signaling of airway SMCs contracted with methacholine (MCh) was investigated in murine lung slices with phase-contrast and laser scanning microscopy. RESULTS: All three cAMP-elevating agents simultaneously induced a reduction in the frequency of Ca(2+ )oscillations within the SMCs and the relaxation of contracted airways. The decrease in the Ca(2+ )oscillation frequency correlated with the extent of airway relaxation and was concentration-dependent. The mechanism by which cAMP reduced the frequency of the Ca(2+ )oscillations was investigated. Elevated cAMP did not affect the re-filling rate of the internal Ca(2+ )stores after emptying by repetitive exposure to 20 mM caffeine. Neither did elevated cAMP limit the Ca(2+ )available to stimulate contraction because an elevation of intracellular Ca(2+ )concentration induced by exposure to a Ca(2+ )ionophore (ionomycin) or by photolysis of caged-Ca(2+ )did not reverse the effect of cAMP. Similar results were obtained with iberiotoxin, a blocker of Ca(2+)-activated K(+ )channels, which would be expected to increase Ca(2+ )influx and contraction. By contrast, the photolysis of caged-IP(3 )in the presence of agonist, to further elevate the intracellular IP(3 )concentration, reversed the slowing of the frequency of the Ca(2+ )oscillations and relaxation of the airway induced by FSK. This result implied that the sensitivity of the IP(3)R to IP(3 )was reduced by FSK and this was supported by the reduced ability of IP(3 )to release Ca(2+ )in SMCs in the presence of FSK. CONCLUSION: These results indicate that the relaxant effect of cAMP-elevating agents on airway SMCs is achieved by decreasing the Ca(2+ )oscillation frequency by reducing internal Ca(2+ )release through IP(3 )receptors
    • …
    corecore