17 research outputs found

    Realizing the promise of population biobanks: a new model for translation

    Get PDF
    The promise of science lies in expectations of its benefits to societies and is matched by expectations of the realisation of the significant public investment in that science. In this paper, we undertake a methodological analysis of the science of biobanking and a sociological analysis of translational research in relation to biobanking. Part of global and local endeavours to translate raw biomedical evidence into practice, biobanks aim to provide a platform for generating new scientific knowledge to inform development of new policies, systems and interventions to enhance the public’s health. Effectively translating scientific knowledge into routine practice, however, involves more than good science. Although biobanks undoubtedly provide a fundamental resource for both clinical and public health practice, their potentiating ontology—that their outputs are perpetually a promise of scientific knowledge generation—renders translation rather less straightforward than drug discovery and treatment implementation. Biobanking science, therefore, provides a perfect counterpoint against which to test the bounds of translational research. We argue that translational research is a contextual and cumulative process: one that is necessarily dynamic and interactive and involves multiple actors. We propose a new multidimensional model of translational research which enables us to imagine a new paradigm: one that takes us from bench to bedside to backyard and beyond, that is, attentive to the social and political context of translational science, and is cognisant of all the players in that process be they researchers, health professionals, policy makers, industry representatives, members of the public or research participants, amongst others

    Bridging consent: from toll bridges to lift bridges?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ability to share human biological samples, associated data and results across disease-specific and population-based human research biobanks is becoming increasingly important for research into disease development and translation. Although informed consent often does not anticipate such cross-domain sharing, it is important to examine its plausibility. The purpose of this study was to explore the feasibility of bridging consent between disease-specific and population-based research. Comparative analyses of 1) current ethical and legal frameworks governing consent and 2) informed consent models found in disease-specific and population-based research were conducted.</p> <p>Discussion</p> <p>Ethical and legal frameworks governing consent dissuade cross-domain data sharing. Paradoxically, analysis of consent models for disease-specific and population-based research reveals such a high degree of similarity that bridging consent could be possible if additional information regarding bridging was incorporated into consent forms. We submit that bridging of consent could be supported if current trends endorsing a new interpretation of consent are adopted. To illustrate this we sketch potential bridging consent scenarios.</p> <p>Summary</p> <p>A bridging consent, respectful of the spirit of initial consent, is feasible and would require only small changes to the content of consents currently being used. Under a bridging consent approach, the initial data and samples collection can serve an identified research project as well as contribute to the creation of a resource for a range of other projects.</p

    Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK): Explanation and Elaboration

    Get PDF
    The REMARK “elaboration and explanation” guideline, by Doug Altman and colleagues, provides a detailed reference for authors on important issues to consider when designing, conducting, and analyzing tumor marker prognostic studies

    Magnetic properties of Ce 3+

    No full text
    The magnetic susceptibility of Pb1-xCexA (A = S, Se and Te) crystals with 0.006 ≤  x ≤ 0.036  were studied in the temperature range from 20 mK up to room temperature. X-band (~9.5 GHz) Electron Paramagnetic Resonance (EPR) showed small shifts in the effective Landé factors that were attributed to crystal-field admixture. The EPR measurements were correlated with the magnetic susceptibility data and resulted in estimating the crystal-field splitting Δ = E(Γ8) - E(Γ7) of the lowest 2F5/2 manifold for Ce3+ ions in PbA (A = S, Se and Te) of about 340 K, 440 K and 540 K for Pb1-xCexTe, Pb1-xCexSe, and Pb1-xCexS, respectively. The values for the crystal-field splitting deduced from the magnetic data were found to be in agreement with the calculated ones based on the point charge model. Moreover, the deHaas van-Alphen magnetic oscillations in the susceptibility measurements of Pb1-xCexTe (x~ 0.05 and 0.07) were observed at ultra-low temperature (20 mK); The oscillations were investigated and the values of the oscillatory period for Pb1-xCexTe (x = 0.0048 and 0.007) are reported

    Evidence for resonant tunneling of magnetization in Mn12 acetate complex

    Get PDF
    We have measured the dc magnetization at low temperatures of tetragonal crystals of Mn12 acetate complex [Mn12O12[CH3COO]16[H2O]4], a material composed of a large ~Avogadro’s! number of identical magnetic molecules, each of spin 10. Exchange coupling between Mn ions within each molecule is very strong, while the interaction between molecules is negligible. A large, uniaxial anisotropy ~;60 K! gives rise to a doubly degenerate ground state corresponding to spin projections of 610 along the easy axis ~c axis!; hysteretic behavior is found below a blocking temperature Tb;3 K. Based on measurements of oriented crystallites at temperatures between 1.7 and 3.2 K, we report strong evidence for resonant tunneling of the magnetization: periodic steps in the hysteresis loop, and periodic marked increases in the magnetic relaxation rate at the magnetic fields corresponding to these steps. A total of seven increases in the relaxation rate were found within the temperature range of our experiments with a period of 0.46 T; we suggest that many more such steps would be found at lower temperatures. We attribute these observations to thermally assisted resonant tunneling of the magnetization and propose a detailed model to account for our results
    corecore