141 research outputs found

    Energy Balance, Myostatin, and GILZ: Factors Regulating Adipocyte Differentiation in Belly and Bone

    Get PDF
    Peroxisome proliferator-activated receptor gamma (PPAR-γ) belongs to the nuclear hormone receptor subfamily of transcription factors. PPARs are expressed in key target tissues such as liver, fat, and muscle and thus they play a major role in the regulation of energy balance. Because of PPAR-γ's role in energy balance, signals originating from the gut (e.g., GIP), fat (e.g., leptin), muscle (e.g., myostatin), or bone (e.g., GILZ) can in turn modulate PPAR expression and/or function. Of the two PPAR-γ isoforms, PPAR-γ2 is the key regulator of adipogenesis and also plays a role in bone development. Activation of this receptor favors adipocyte differentiation of mesenchymal stem cells, while inhibition of PPAR-γ2 expression shifts the commitment towards the osteoblastogenic pathway. Clinically, activation of this receptor by antidiabetic agents of the thiazolidinedione class results in lower bone mass and increased fracture rates. We propose that inhibition of PPAR-γ2 expression in mesenchymal stem cells by use of some of the hormones/factors mentioned above may be a useful therapeutic strategy to favor bone formation

    What doesn't kill you makes you stranger: Dipeptidyl peptidase-4 (CD26) proteolysis differentially modulates the activity of many peptide hormones and cytokines generating novel cryptic bioactive ligands

    Get PDF
    Dipeptidyl peptidase 4 (DPP4) is an exopeptidase found either on cell surfaces where it is highly regulated in terms of its expression and surface availability (CD26) or in a free/circulating soluble constitutively available and intrinsically active form. It is responsible for proteolytic cleavage of many peptide substrates. In this review we discuss the idea that DPP4-cleaved peptides are not necessarily inactivated, but rather can possess either a modified receptor selectivity, modified bioactivity, new antagonistic activity, or even a novel activity relative to the intact parent ligand. We examine in detail five different major DPP4 substrates: glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), peptide tyrosine-tyrosine (PYY), and neuropeptide Y (NPY), and stromal derived factor 1 (SDF-1 aka CXCL12). We note that discussion of the cleaved forms of these five peptides are underrepresented in the research literature, and are both poorly investigated and poorly understood, representing a serious research literature gap. We believe they are understudied and misinterpreted as inactive due to several factors. This includes lack of accurate and specific quantification methods, sample collection techniques that are inherently inaccurate and inappropriate, and a general perception that DPP4 cleavage inactivates its ligand substrates. Increasing evidence points towards many DPP4-cleaved ligands having their own bioactivity. For example, GLP-1 can work through a different receptor than GLP-1R, DPP4-cleaved GIP can function as a GIP receptor antagonist at high doses, and DPP4-cleaved PYY, NPY, and CXCL12 can have different receptor selectivity, or can bind novel, previously unrecognized receptors to their intact ligands, resulting in altered signaling and functionality. We believe that more rigorous research in this area could lead to a better understanding of DPP4’s role and the biological importance of the generation of novel cryptic ligands. This will also significantly impact our understanding of the clinical effects and side effects of DPP4-inhibitors as a class of anti-diabetic drugs that potentially have an expanding clinical relevance. This will be specifically relevant in targeting DPP4 substrate ligands involved in a variety of other major clinical acute and chronic injury/disease areas including inflammation, immunology, cardiology, stroke, musculoskeletal disease and injury, as well as cancer biology and tissue maintenance in aging

    Insulin Resistance and the IGF-I-Cortical Bone Relationship in Children Ages 9-13 Years

    Get PDF
    IGF-I is a pivotal hormone in pediatric musculoskeletal development. Although recent data suggest that the role of IGF-I in total body lean mass and total body bone mass accrual may be compromised in children with insulin resistance, cortical bone geometric outcomes have not been studied in this context. Therefore, we explored the influence of insulin resistance on the relationship between IGF-I and cortical bone in children. A secondary aim was to examine the influence of insulin resistance on the lean mass-dependent relationship between IGF-I and cortical bone. Children were otherwise healthy, early adolescent black and white boys and girls (ages 9 to 13 years) and were classified as having high (n = 147) or normal (n = 168) insulin resistance based on the homeostasis model assessment of insulin resistance (HOMA-IR). Cortical bone at the tibia diaphysis (66% site) and total body fat-free soft tissue mass (FFST) were measured by peripheral quantitative computed tomography (pQCT) and dual-energy X-ray absorptiometry (DXA), respectively. IGF-I, insulin, and glucose were measured in fasting sera and HOMA-IR was calculated. Children with high HOMA-IR had greater unadjusted IGF-I (p < 0.001). HOMA-IR was a negative predictor of cortical bone mineral content, cortical bone area (Ct.Ar), and polar strength strain index (pSSI; all p ≤ 0.01) after adjusting for race, sex, age, maturation, fat mass, and FFST. IGF-I was a positive predictor of most musculoskeletal endpoints (all p < 0.05) after adjusting for race, sex, age, and maturation. However, these relationships were moderated by HOMA-IR (pInteraction < 0.05). FFST positively correlated with most cortical bone outcomes (all p < 0.05). Path analyses demonstrated a positive relationship between IGF-I and Ct.Ar via FFST in the total cohort (βIndirect Effect = 0.321, p < 0.001). However, this relationship was moderated in the children with high (βIndirect Effect = 0.200, p < 0.001) versus normal (βIndirect Effect = 0.408, p < 0.001) HOMA-IR. These data implicate insulin resistance as a potential suppressor of IGF-I-dependent cortical bone development, though prospective studies are needed

    Listeriolysin O Causes ENaC Dysfunction in Human Airway Epithelial Cells.

    Get PDF
    Pulmonary permeability edema is characterized by reduced alveolar Na⁺ uptake capacity and capillary barrier dysfunction and is a potentially lethal complication of listeriosis. Apical Na⁺ uptake is mainly mediated by the epithelial sodium channel (ENaC) and initiates alveolar liquid clearance. Here we examine how listeriolysin O (LLO), the pore-forming toxin of Listeria monocytogenes, impairs the expression and activity of ENaC. To that purpose, we studied how sub-lytic concentrations of LLO affect negative and positive regulators of ENaC expression in the H441 airway epithelial cell line. LLO reduced expression of the crucial ENaC-α subunit in H441 cells within 2 h and this was preceded by activation of PKC-α, a negative regulator of the channel\u27s expression. At later time points, LLO caused a significant reduction in the phosphorylation of Sgk-1 at residue T256 and of Akt-1 at residue S473, both of which are required for full activation of ENaC. The TNF-derived TIP peptide prevented LLO-mediated PKC-α activation and restored phospho-Sgk-1-T256. The TIP peptide also counteracted the observed LLO-induced decrease in amiloride-sensitive Na⁺ current and ENaC-α expression in H441 cells. Intratracheally instilled LLO caused profound pulmonary edema formation in mice, an effect that was prevented by the TIP peptide; thus indicating the therapeutic potential of the peptide for the treatment of pore-forming toxin-associated permeability edema

    Prediction of Breast Cancer-Related Lymphedema By Dermal Backflow Detected With Near-infrared Fluorescence Lymphatic Imaging

    Get PDF
    PURPOSE: Mild breast cancer-related lymphedema (BCRL) is clinically diagnosed as a 5%-10% increase in arm volume, typically measured no earlier than 3-6 months after locoregional treatment. Early BCRL treatment is associated with better outcomes, yet amid increasing evidence that lymphedema exists in a latent form, treatment is typically delayed until arm swelling is obvious. In this study, we investigated whether near-infrared fluorescence lymphatic imaging (NIRF-LI) surveillance could characterize early onset of peripheral lymphatic dysfunction as a predictor of BCRL. METHODS: In a prospective, longitudinal cohort/observational study (NCT02949726), subjects with locally advanced breast cancer who received axillary lymph node dissection and regional nodal radiotherapy (RT) were followed serially, between 2016 and 2021, before surgery, 4-8 weeks after surgery, and 6, 12, and 18 months after RT. Arm volume was measured by perometry, and lymphatic (dys) function was assessed by NIRF-LI. RESULTS: By 18 months after RT, 30 of 42 study subjects (71%) developed mild-moderate BCRL (i.e., ≥ 5% arm swelling relative to baseline), all manifested by dermal backflow of lymph into lymphatic capillaries or interstitial spaces. Dermal backflow had an 83% positive predictive value and 86% negative predictive value for BCRL, with a sensitivity of 97%, specificity of 50%, accuracy of 83%, positive likelihood ratio of 1.93, negative likelihood ratio of 0.07, and odds ratio of 29.00. Dermal backflow appeared on average 8.3 months, but up to 23 months, before the onset of mild BCRL. CONCLUSION: BCRL can be predicted by dermal backflow, which often appears months before arm swelling, enabling early treatment before the onset of edema and irreversible tissue changes

    Age-related increase of kynurenine enhances miR29b-1-5p to decrease both CXCL12 signaling and the epigenetic enzyme Hdac3 in bone marrow stromal cells

    Get PDF
    Mechanisms leading to age-related reductions in bone formation and subsequent osteoporosis are still incompletely understood. We recently demonstrated that kynurenine (KYN), a tryptophan metabolite, accumulates in serum of aged mice and induces bone loss. Here, we report on novel mechanisms underlying KYN's detrimental effect on bone aging. We show that KYN is increased with aging in murine bone marrow mesenchymal stem cells (BMSCs). KYN reduces bone formation via modulating levels of CXCL12 and its receptors as well as histone deacetylase 3 (Hdac3). BMSCs responded to KYN by significantly decreasing mRNA expression levels of CXCL12 and its cognate receptors, CXCR4 and ACKR3, as well as downregulating osteogenic gene RUNX2 expression, resulting in a significant inhibition in BMSCs osteogenic differentiation. KYN's effects on these targets occur by increasing regulatory miRNAs that target osteogenesis, specifically miR29b-1-5p. Thus, KYN significantly upregulated the anti-osteogenic miRNA miR29b-1-5p in BMSCs, mimicking the up-regulation of miR-29b-1-5p in human and murine BMSCs with age. Direct inhibition of miR29b-1-5p by antagomirs rescued CXCL12 protein levels downregulated by KYN, while a miR29b-1-5p mimic further decreased CXCL12 levels. KYN also significantly downregulated mRNA levels of Hdac3, a target of miR-29b-1-5p, as well as its cofactor NCoR1. KYN is a ligand for the aryl hydrocarbon receptor (AhR). We hypothesized that AhR mediates KYN's effects in BMSCs. Indeed, AhR inhibitors (CH-223191 and 3',4'-dimethoxyflavone [DMF]) partially rescued secreted CXCL12 protein levels in BMSCs treated with KYN. Importantly, we found that treatment with CXCL12, or transfection with an miR29b-1-5p antagomir, downregulated the AhR mRNA level, while transfection with miR29b-1-5p mimic significantly upregulated its level. Further, CXCL12 treatment downregulated IDO, an enzyme responsible for generating KYN. Our findings reveal novel molecular pathways involved in KYN's age-associated effects in the bone microenvironment that may be useful translational targets for treating osteoporosis

    Bone mass of female dance students prior to professional dance training: A cross-sectional study

    Get PDF
    Article Authors Metrics Comments Related Content Abstract Introduction Methods Results Discussion Conclusions Acknowledgments References Reader Comments (0) Media Coverage (0) Figures Abstract Background Professional dancers are at risk of developing low bone mineral density (BMD). However, whether low BMD phenotypes already exist in pre-vocational dance students is relatively unknown. Aim To cross-sectionally assess bone mass parameters in female dance students selected for professional dance training (first year vocational dance students) in relation to aged- and sex-matched controls. Methods 34 female selected for professional dance training (10.9yrs ±0.7) and 30 controls (11.1yrs ±0.5) were examined. Anthropometry, pubertal development (Tanner) and dietary data (3-day food diary) were recorded. BMD and bone mineral content (BMC) at forearm, femur neck (FN) and lumbar spine (LS) were assessed using Dual-Energy X-Ray Absorptiometry. Volumetric densities were estimated by calculating bone mineral apparent density (BMAD). Results Dancers were mainly at Tanner pubertal stage I (vs. stage IV in controls, p<0.001), and demonstrated significantly lower body weight (p<0.001) and height (p<0.01) than controls. Calorie intake was not different between groups, but calcium intake was significantly greater in dancers (p<0.05). Dancers revealed a significantly lower BMC and BMD values at all anatomical sites (p<0.001), and significantly lower BMAD values at the LS and FN (p<0.001). When adjusted for covariates (body weight, height, pubertal development and calcium intake), dance students continued to display a significantly lower BMD and BMAD at the FN (p<0.05; p<0.001) at the forearm (p<0.01). Conclusion Before undergoing professional dance training, first year vocational dance students demonstrated inferior bone mass compared to controls. Longitudinal models are required to assess how bone health-status changes with time throughout professional training
    corecore