50 research outputs found
Mucuna pruriens for Parkinson's disease: Low-cost preparation method, laboratory measures and pharmacokinetics profile
Abstract Background Parkinson's disease (PD) is a progressive neurological condition. Levodopa (LD) is the gold standard therapy for PD patients. Most PD patients in low-income areas cannot afford long-term daily Levodopa therapy. The aim of our study was to investigate if Mucuna pruriens (MP), a legume with high LD content that grows in tropical regions worldwide, might be potential alternative for poor PD patients. Methods We analyzed 25 samples of MP from Africa, Latin America and Asia. We measured the content in LD in various MP preparations (dried, roasted, boiled). LD pharmacokinetics and motor response were recorded in four PD patients, comparing MP vs. LD+Dopa-Decarboxylase Inhibitor (DDCI) formulations. Results Median LD concentration in dried MP seeds was 5.29%; similar results were obtained in roasted powder samples (5.3%), while boiling reduced LD content up to 70%. Compared to LD+DDCI, MP extract at similar LD dose provided less clinical benefit, with a 3.5-fold lower median AUC. Conclusion Considering the lack of a DDCI, MP therapy may provide clinical benefit only when content of LD is at least 3.5-fold the standard LD+DDCI. If long-term MP proves to be safe and effective in controlled clinical trials, it may be a sustainable alternative therapy for PD in low-income countries
Beta oscillatory changes and retention of motor skills during practice in healthy subjects and in patients with Parkinson's disease
Recently we found that modulation depth of beta power during movement increases with practice over sensory-motor areas in normal subjects but not in patients with Parkinson's disease (PD). As such changes might reflect use-dependent modifications, we concluded that reduction of beta enhancement in PD represents saturation of cortical plasticity. A few questions remained open: What is the relation between these EEG changes and retention of motor skills? Would a second task exposure restore beta modulation enhancement in PD? Do practice-induced increases of beta modulation occur within each block? We thus recorded EEG in patients with PD and age-matched controls in two consecutive days during a 40-min reaching task divided in fifteen blocks of 56 movements each. The results confirmed that, with practice, beta modulation depth over the contralateral sensory-motor area significantly increased across blocks in controls but not in PD, while performance improved in both groups without significant correlations between behavioral and EEG data. The same changes were seen the following day in both groups. Also, beta modulation increased within each block with similar values in both groups and such increases were partially transferred to the successive block in controls, but not in PD. Retention of performance improvement was present in the controls but not in the patients and correlated with the increase in day 1 modulation depth. Therefore, the lack of practice-related increase beta modulation in PD is likely due to deficient potentiation mechanisms that permit between-block saving of beta power enhancement and trigger mechanisms of memory formation
The sensitivity of ECG contamination to surgical implantation site in brain computer interfaces.
BACKGROUND
Brain sensing devices are approved today for Parkinson's, essential tremor, and epilepsy therapies. Clinical decisions for implants are often influenced by the premise that patients will benefit from using sensing technology. However, artifacts, such as ECG contamination, can render such treatments unreliable. Therefore, clinicians need to understand how surgical decisions may affect artifact probability.
OBJECTIVES
Investigate neural signal contamination with ECG activity in sensing enabled neurostimulation systems, and in particular clinical choices such as implant location that impact signal fidelity.
METHODS
Electric field modeling and empirical signals from 85 patients were used to investigate the relationship between implant location and ECG contamination.
RESULTS
The impact on neural recordings depends on the difference between ECG signal and noise floor of the electrophysiological recording. Empirically, we demonstrate that severe ECG contamination was more than 3.2x higher in left-sided subclavicular implants (48.3%), when compared to right-sided implants (15.3%). Cranial implants did not show ECG contamination.
CONCLUSIONS
Given the relative frequency of corrupted neural signals, we conclude that implant location will impact the ability of brain sensing devices to be used for "closed-loop" algorithms. Clinical adjustments such as implant location can significantly affect signal integrity and need consideration
Enhanced catecholamine transporter binding in the locus coeruleus of patients with early Parkinson disease
<p>Abstract</p> <p>Background</p> <p>Studies in animals suggest that the noradrenergic system arising from the locus coeruleus (LC) and dopaminergic pathways mutually influence each other. Little is known however, about the functional state of the LC in patients with Parkinson disease (PD).</p> <p>Methods</p> <p>We retrospectively reviewed clinical and imaging data of 94 subjects with PD at an early clinical stage (Hoehn and Yahr stage 1-2) who underwent single photon computed tomography imaging with FP-CIT ([<sup>123</sup>I] N-Ï-fluoropropyl-2ÎČ-carbomethoxy-3ÎČ-(4-iodophenyl) tropane). FP-CIT binding values from the patients were compared with 15 healthy subjects: using both a voxel-based whole brain analysis and a volume of interest analysis of <it>a priori </it>defined brain regions.</p> <p>Results</p> <p>Average FP-CIT binding in the putamen and caudate nucleus was significantly reduced in PD subjects (43% and 57% on average, respectively; p < 0.001). In contrast, subjects with PD showed an increased binding in the LC (166% on average; p < 0.001) in both analyses. LC-binding correlated negatively with striatal FP-CIT binding values (caudate: contralateral, Ï = -0.28, p < 0.01 and ipsilateral Ï = -0.26, p < 0.01; putamen: contralateral, Ï = -0.29, p < 0.01 and ipsilateral Ï = -0.29, p < 0.01).</p> <p>Conclusions</p> <p>These findings are consistent with an up-regulation of noradrenaline reuptake in the LC area of patients with early stage PD, compatible with enhanced noradrenaline release, and a compensating activity for degeneration of dopaminergic nigrostriatal projections.</p
Gait Event Prediction Using Surface Electromyography in Parkinsonian Patients
Gait disturbances are common manifestations of Parkinsonâs disease (PD), with unmet therapeutic needs. Inertial measurement units (IMUs) are capable of monitoring gait, but they lack neurophysiological information that may be crucial for studying gait disturbances in these patients. Here, we present a machine learning approach to approximate IMU angular velocity profiles and subsequently gait events using electromyographic (EMG) channels during overground walking in patients with PD. We recorded six parkinsonian patients while they walked for at least three minutes. Patient-agnostic regression models were trained on temporally embedded EMG time series of different combinations of up to five leg muscles bilaterally (i.e., tibialis anterior, soleus, gastrocnemius medialis, gastrocnemius lateralis, and vastus lateralis). Gait events could be detected with high temporal precision (median displacement of <50 ms), low numbers of missed events (<2%), and next to no false-positive event detections (<0.1%). Swing and stance phases could thus be determined with high fidelity (median F1-score of ~0.9). Interestingly, the best performance was obtained using as few as two EMG probes placed on the left and right vastus lateralis. Our results demonstrate the practical utility of the proposed EMG-based system for gait event prediction, which allows the simultaneous acquisition of an electromyographic signal to be performed. This gait analysis approach has the potential to make additional measurement devices such as IMUs and force plates less essential, thereby reducing financial and preparation overheads and discomfort factors in gait studies
Altered centre of mass vertical displacement in Parkinson disease patients during walking
Gait disturbance is a key component of motor disability in subjects with Parkinson disease (PD). Along with disease progression, gait velocity â and related spatio-temporal parameters â dramatically reduces as well as limb range-of-motions (ROM). In this study, we investigated changes in centre of mass vertical displacement (CoMVD) and its relationship with lower limb ROM in PD patients compared to healthy subjects (HC) walking at comparable velocities