17 research outputs found

    The air-sea transformation and residual overturning circulation within the Nordic Seas

    Get PDF
    The residual diapycnal overturning circulation through interior regions of the Nordic Seas is diagnosed. The mean flow is estimated from Ekman dynamics and from the thermal wind relation with reference level velocities deduced from observations and from simplified theory. Eddy-induced transport is estimated from a GM-type parameterization which includes top and bottom boundary layers. The contributions from the Eulerian mean and eddy-induced transport are then compared to the annual-mean air – sea density transformation over the Nordic Seas. The calculations suggest that the mean flow overturning may explain up to 25% of the observed air – sea transformation in the Lofoten-Norwegian Sea basins. But, over all, eddy-induced overturning must dominate the transport of buoyancy and heat into these interior regions, and the eddy parameterization used here is able to explain most of the density transformation rates. The calculations generally support previous claims that small-scale mixing is of secondary importance in high-latitude regions such as this, but they also open for the existence of a deep mixing-driven overturning cell between the eastern and western parts of the Nordic Seas

    The large-scale time-mean ocean circulation in the Nordic Seas and Arctic Ocean estimated from simplified dynamics

    Get PDF
    A simplified diagnostic model of the time-mean, large-scale ocean circulation in the Nordic Seas and Arctic Ocean is presented. Divergences in the surface Ekman layer are extracted from observed climatological wind stress fields. Similarly, divergences caused by the meridional thermal wind transport (relative to the bottom) are calculated from an observed climatological density field. These known quantities are then used to force the model\u27s bottom geostrophic velocities. Both scaling arguments and direct observations show that for long time scales the bottom currents are closely aligned with contours of f/H, (where f is the Coriolis parameter and H is the depth of the seabed). Due to the weak planetary vorticity gradient at high latitudes, the f/H field is dominated by topography and is characterized by multiple regions of closed isolines. The only frictional effect included in the model is bottom stress. By then integrating the depth-integrated vorticity equation over the area spanned by a closed f/H contour, and assuming that the same contour is a streamline of the bottom geostrophic flow, we derive an analytical expression for the bottom geostrophic velocity on this f/H contour. For the few contours that are not closed, current measurements are used as boundary conditions. Model results are compared with near-bottom current measurements in both the Nordic Seas and the Arctic Ocean. In addition comparison is made with observations from surface drifters in the Nordic Seas by adding the observed thermal wind shear to the modeled bottom flow. The agreement is surprisingly good, suggesting that the simple model is capturing some of the most important processes responsible for the large-scale circulation field. Features like the subgyre recirculations in the Nordic Seas, the gyres in the Canadian and Eurasian Basins, the East Greenland Current, the Norwegian Atlantic Current and the Arctic Circumpolar Boundary Current are all well reproduced by the model. The simplicity of the model makes it well suited as a dynamical framework for interpreting the large-scale circulation pattern in the Nordic Seas and Arctic Ocean

    The mesoscale eddy field in the Lofoten Basin from high-resolution Lagrangian simulations

    Get PDF
    Warm Atlantic-origin waters are modified in the Lofoten Basin in the Nordic Seas on their way toward the Arctic. An energetic eddy field redistributes these waters in the basin. Retained for extended periods, the warm waters result in large surface heat losses to the atmosphere and have an impact on fisheries and regional climate. Here, we describe the eddy field in the Lofoten Basin by analyzing Lagrangian simulations forced by a high-resolution numerical model. We obtain trajectories of particles seeded at three levels – near the surface, at 200 m and at 500 m depth – using 2D and 3D velocity fields. About 200 000 particle trajectories are analyzed from each level and each simulation. Using multivariate wavelet ridge analysis, we identify coherent cyclonic and anticyclonic vortices in the trajectories and describe their characteristics. We then compare the evolution of water properties inside cyclones and anticyclones as well as in the ambient flow outside vortices. As measured from Lagrangian particles, anticyclones have longer lifetimes than cyclones (16–24 d compared to 13–19 d), a larger radius (20–22 km compared to 17–19 km) and a more circular shape (ellipse linearity of 0.45–0.50 compared to 0.51–0.57). The angular frequencies for cyclones and anticyclones have similar magnitudes (absolute values of about 0.05f). The anticyclones are characterized by warm temperature anomalies, whereas cyclones are colder than the background state. Along their path, water parcels in anticyclones cool at a rate of 0.02–0.04 ∘Cd−1, while those in cyclones warm at a rate of 0.01–0.02 ∘Cd−1. Water parcels experience a net downward motion in anticyclones and upward motion in cyclones, often found to be related to changes in temperature and density. The along-path changes in temperature, density and depth are smaller for particles in the ambient flow. An analysis of the net temperature and vorticity fluxes into the Lofoten Basin shows that while vortices contribute significantly to the heat and vorticity budgets, they only cover a small fraction of the domain area (about 6 %). The ambient flow, including filaments and other non-coherent variability undetected by the ridge analysis, hence plays a major role in closing the budgets of the basin.publishedVersio

    Rapid response of the Norwegian Atlantic Slope Current to wind forcing

    Get PDF
    Under embargo until: 2023-07-11We explore drivers of variability in the Norwegian Atlantic Slope Current, which carries relatively warm Atlantic Water toward the Barents Sea and Arctic Ocean, using Copernicus Marine Environment Monitoring Service (CMEMS) satellite altimetry data and TOPAZ4 ocean reanalysis data. Previous studies have pointed to a variety of causes, on a variety of time scales. We use data with daily resolution to investigate day-to-day changes in ocean transport across three sections crossing the shelf-slope of Norway (SvinĂžy, GimsĂžy, and the Barents Sea Opening). The highest (lowest) extremes in transport at all sections develop over two days as a cyclonic (anticyclonic) atmospheric pressure system approaches from the southwest, piling up (extracting) water at the coast of Norway. The actual peak is reached when the pressure system passes the site of measurement, and the transport then relaxes for the next two days as the system continues northward along the coast. Other sources of short-term variability, such as propagating continental shelf waves and baroclinic instability, are unlikely to yield covariability over large separations. Monthly variability in the current can also be explained by passing weather systems since their numbers and intensity vary greatly from month to month. Many studies of longer-term variability, especially in the Barents Sea Opening, have pointed to the North Atlantic Oscillation (NAO) as the main cause of variability. Our results show that passing weather systems offer a better explanation of month-to-month variability.publishedVersio

    Topographic influence on baroclinic instability and the mesoscale eddy field in the northern North Atlantic Ocean and the Nordic Seas

    No full text
    Weakly stratified layers over sloping topography can support a submesoscale baroclinic instability mode, a bottom boundary layer counterpart to surface mixed layer instabilities. The instability results from the release of available potential energy, which can be generated because of the observed bottom intensification of turbulent mixing in the deep ocean, or the Ekman adjustment of a current on a slope. Linear stability analysis suggests that the growth rates of bottom boundary layer baroclinic instabilities can be comparable to those of the surface mixed layer mode and are relatively insensitive to topographic slope angle, implying the instability is robust and potentially active in many areas of the global oceans. The solutions of two separate one-dimensional theories of the bottom boundary layer are both demonstrated to be linearly unstable to baroclinic instability, and results from an example nonlinear simulation are shown. Implications of these findings for understanding bottom boundary layer dynamics and processes are discussed

    Critical role of continental slopes in halocline and eddy dynamics of the Ekman-driven Beaufort Gyre

    No full text
    The Beaufort Gyre (BG) is a large‐scale bathymetrically constrained circulation driven by a surface Ekman convergence that creates a bowl‐shaped halocline and stores a significant portion of the Arctic Ocean's freshwater. Theoretical studies suggest that in the gyre interior, the halocline is equilibrated by a balance between Ekman pumping and counteracting mesoscale eddy transport energized by baroclinic instability. However, the strongest anticyclonic flows occur over steep continental slopes, and, despite bathymetric slopes being known to influence baroclinic instability, their large‐scale impacts on BG halocline remain unexplored. Here we use an idealized eddy‐resolving BG model to demonstrate that the existence of continental slopes dramatically affects key gyre characteristics leading to deeper halocline, stronger anticyclonic circulation, and prolonged equilibration. Over continental slopes, the magnitude of the Eulerian mean circulation is dramatically reduced due to the Ekman overturning being compensated by the eddy momentum‐driven overturning. The eddy thickness flux overturning associated with lateral salt transport is also weakened over the slopes, indicating a reduction of eddy thickness diffusivity despite the isopycnal slopes being largest there. Using a theoretical halocline model, we demonstrate that it is the localized reduction in eddy diffusivity over continental slopes that is critical in explaining the halocline deepening and prolonged equilibration time. Our results emphasize the need for observational studies of eddy overturning dynamics over continental slopes and the development of slope‐aware mesoscale eddy parameterizations for low‐resolution climate models

    Rectified tidal transport in Lofoten–VesterĂ„len, northern Norway

    Get PDF
    Vestfjorden in northern Norway, a major spawning ground for the northeast Arctic cod, is sheltered from the continental shelf and open ocean by the Lofoten–VesterĂ„len archipelago. The archipelago, however, is well known for hosting strong and vigorous tidal currents in its many straits, currents that can produce significant time-mean tracer transport from Vestfjorden to the shelf outside. We use a purely tidally driven unstructured-grid ocean model to look into non-linear tidal dynamics and the associated tracer transport through the archipelago. Of particular interest are two processes: tidal pumping through the straits and tidal rectification around islands. The most prominent tracer transport is caused by tidal pumping through the short and strongly non-linear straits Nordlandsflaget and Moskstraumen near the southern tip of the archipelago. Here, tracers from Vestfjorden are transported tens of kilometers westward out on the outer shelf. Further north, weaker yet notable tidal pumping also takes place through the longer straits Nappstraumen and GimsĂžystraumen. The other main transport route out of Vestfjorden is south of the island of RĂžst. Here, the transport is primarily due to tracer advection by rectified anticyclonic currents around the island. There is also an anticyclonic circulation cell around the island group Mosken–VĂŠrĂžy, and both cells have flow speeds up to 0.2 m s−1, magnitudes similar to the observed background currents in the region. These high-resolution simulations thus emphasize the importance of non-linear tidal dynamics for transport of floating particles, like cod eggs and larvae, in the region

    Rectified tidal transport in Lofoten–VesterĂ„len, northern Norway

    No full text
    Vestfjorden in northern Norway, a major spawning ground for the northeast Arctic cod, is sheltered from the continental shelf and open ocean by the Lofoten–VesterĂ„len archipelago. The archipelago, however, is well known for hosting strong and vigorous tidal currents in its many straits, currents that can produce significant time-mean tracer transport from Vestfjorden to the shelf outside. We use a purely tidally driven unstructured-grid ocean model to look into non-linear tidal dynamics and the associated tracer transport through the archipelago. Of particular interest are two processes: tidal pumping through the straits and tidal rectification around islands. The most prominent tracer transport is caused by tidal pumping through the short and strongly non-linear straits Nordlandsflaget and Moskstraumen near the southern tip of the archipelago. Here, tracers from Vestfjorden are transported tens of kilometers westward out on the outer shelf. Further north, weaker yet notable tidal pumping also takes place through the longer straits Nappstraumen and GimsĂžystraumen. The other main transport route out of Vestfjorden is south of the island of RĂžst. Here, the transport is primarily due to tracer advection by rectified anticyclonic currents around the island. There is also an anticyclonic circulation cell around the island group Mosken–VĂŠrĂžy, and both cells have flow speeds up to 0.2 m s−1, magnitudes similar to the observed background currents in the region. These high-resolution simulations thus emphasize the importance of non-linear tidal dynamics for transport of floating particles, like cod eggs and larvae, in the region

    The influence of topography on the stability of the Norwegian Atlantic Current off Northern Norway

    No full text
    The steep continental slope off the Lofoten–VesterĂ„len islands of northern Norway appears to be the source of the most intense mesoscale eddy field in all of the Nordic Seas. Here we use linearized two-layer shallow-water equations to study the stability of the Norwegian Atlantic Current in this region. The study extends previous works that used linearized quasigeostrophic vertical mode equations to examine the effects of bottom topography on baroclinic instability here. We find evidence of baroclinic instability in the stacked shallow-water model but also of barotropic instability that is associated with the upper-layer lateral shear. The calculations give an indication that growth rates of barotropic instability may be comparable to or larger than those of baroclinic instability over the steepest parts of the continental slope

    On the chaotic variability of deep convection in the Mediterranean Sea

    No full text
    Chaotic intrinsic variability is a fundamental driver of the oceanic variability. Its understanding is key to interpret observations, evaluate numerical models, and predict the future ocean and climate. Here we study intrinsic variability of deep convection in the northwestern Mediterranean Sea using an ensemble eddy‐resolving hindcast simulation over the period 1979–2013. We find that the variability of deep convection is mostly forced but also, to a considerable extent, intrinsic. The intrinsic variability can dominate the total convection variability locally and over a single winter. It also makes up a significant fraction of its interannual variability but has only modest impacts on the long‐term mean state. We find that the occurrence of deep convection is random 18% of years at the basin scale, and 29% locally at the LION observational site. Spatially, the intrinsic variability is highest far from the continental shelf. We relate this pattern to baroclinic instability theory that takes bottom stabilization into account
    corecore