2,832 research outputs found
Mountain winds (revisited)
The prediction of extremely high wind speeds, at ground level on the downstream side of a mountain range, is possible by solving the initial value problem for a two-layered nonlinear shallow water model of the atmosphere. Three different numerical methods are described to find the solutions which may involve shocks: (1) the vonNeumann-Richtmyer artificial viscosity method, (2) a filtering scheme, and (3) a hybrid method
Numerical methods for meteorology and climatology
Efficient numerical methods for long term weather forecasting are developed. One implicit and one explicit scheme are compared as to accuracy
The application of remotely sensed data in support of emergency rehabilitation of wildfire-damage areas
The depth, texture, and water holding capacity of the soil before the fire in the Bridge Creek area of Deschutes National Forest (1979) were determined from available aerial photography and LANDSAT MSS digital data. Three days after the fire was out, complete coverage of the burned area was acquired on 35 mm color infrared film from a near vertical or low oblique perspective. These photographs were used in assessing the condition of vegetation, and in predicting the likelihood of survival. Negatives from vertical natural photography obtained during the same flight were used to produce 3R prints from which large scale mosaics of the entire burned area were obtained. LANDSAT MSS data obtained on the day the fire was under control were used to evaluate vegetative vigor (by calculating a band 7/band 5 ratio value for each spectral class) and to determine the boundary between altered and unaltered land
Multipole gas thruster design
The development of a low field strength multipole thruster operating on both argon and xenon is described. Experimental results were obtained with a 15-cm diameter multipole thruster and are presented for a wide range of discharge-chamber configurations. Minimum discharge losses were 300-350 eV/ion for argon and 200-250 eV/ion for xenon. Ion beam flatness parameters in the plane of the accelerator grid ranged from 0.85 to 0.93 for both propellants. Thruster performance is correlated for a range of ion chamber sizes and operating conditions as well as propellant type and accelerator system open area. A 30-cm diameter ion source designed and built using the procedure and theory presented here-in is shown capable of low discharge losses and flat ion-beam profiles without optimization. This indicates that by using the low field strength multipole design, as well as general performance correlation information provided herein, it should be possible to rapidly translate initial performance specifications into easily fabricated, high performance prototypes
Gauge Invariant Effective Stress-Energy Tensors for Gravitational Waves
It is shown that if a generalized definition of gauge invariance is used,
gauge invariant effective stress-energy tensors for gravitational waves and
other gravitational perturbations can be defined in a much larger variety of
circumstances than has previously been possible. In particular it is no longer
necessary to average the stress-energy tensor over a region of spacetime which
is larger in scale than the wavelengths of the waves and it is no longer
necessary to restrict attention to high frequency gravitational waves.Comment: 11 pages, RevTe
A Transiting Jupiter Analog
Decadal-long radial velocity surveys have recently started to discover
analogs to the most influential planet of our solar system, Jupiter. Detecting
and characterizing these worlds is expected to shape our understanding of our
uniqueness in the cosmos. Despite the great successes of recent transit
surveys, Jupiter analogs represent a terra incognita, owing to the strong
intrinsic bias of this method against long orbital periods. We here report on
the first validated transiting Jupiter analog, Kepler-167e (KOI-490.02),
discovered using Kepler archival photometry orbiting the K4-dwarf KIC-3239945.
With a radius of , a low orbital eccentricity
() and an equilibrium temperature of K,
Kepler-167e bears many of the basic hallmarks of Jupiter. Kepler-167e is
accompanied by three Super-Earths on compact orbits, which we also validate,
leaving a large cavity of transiting worlds around the habitable-zone. With two
transits and continuous photometric coverage, we are able to uniquely and
precisely measure the orbital period of this post snow-line planet
( d), paving the way for follow-up of this mag
target.Comment: 14 pages, 10 figures. Accepted to ApJ. Posteriors available at
https://github.com/CoolWorlds/Kepler-167-Posterior
- …