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I. INTRODUCTION

The primary objective of this investigation was to understand the

operation of the low field strength multipole ion source. A further

objective was the development of scaling relationships that would per-

mit new high-performance multipole ion sources to be designed without

the usual trial-and-error development program. Both argon and xenon

were used as propel 1 ants. Xenon appears to be the gas best suited for

space propulsion with high atomic weight and ease of storage being the

major factors in this choice. Argon is a possible alternative if tons

of propellant are required (so that cryogenic storage is practical)

and excess electrical power makes efficiency (and hence atomic weight)

less important. Both of these gases offer environmental advantages

over the usual propellants of cesium and mercury. Argon is also the

preferred propellant in the recent ground applications of thruster

technology such as cleaning, micromachining, and ion etching of solid-

state devices.

Thruster Operation

A sketch of a typical electron-bombardment ion source is shown in

Figure 1. It consists of a cylindrical discharge chamber bounded on

the sides by an anode, on the upstream end by the body, and on the down-

stream end by the accelerator system. During operation, neutral

propellant is introduced into the chamber where it is ionized through

electron bombardment. These electrons are emitted by the cathode which

is maintained 30-50 V negative of the anode. This potential difference

is determined by the need to accelerate the electrons to the energy
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Figure 1. Electron-bombardment ion thruster.



range where the ionization cross section is near maximum for the given

propellant. These energetic, or primary, electrons are constrained by

the ends of the discharge chamber which are maintained at cathode

potential and by a magnetic field which prevents them from having

direct access to the anode. The magnetic field is required because the

mean free path for an electron-neutral collision is on the order of a

few meters while the discharge chamber dimensions are typically meas-

ured in centimeters. Although the primary electrons make up only about

10 percent of the total electron population, they account for roughly

half of the ionizations. The remainder of the electron population is

made up of the lower energy electrons produced as a result of collision

processes. These electrons rapidly randomize into an approximate Max-

well ian distribution with a characteristic temperature of about 5 eV.

Because of their lower energy and hence higher cross-section for

coulomb collisions, these electrons then migrate across the magnetic

field and are collected by the anodes.

On the basis of the physical model just presented, the azimuthal

boundary of the volume containing the primary electrons is defined

approximately by the first magnetic field line that does not intersect

the anode. Primary electrons are restricted to this volume because the

anode sheath is small and will not reflect any energetic electrons that

reach it, hence, any primary electron on a field line that does inter-

sect the anode will be lost. Because of this primary electron con-

tainment, the bulk of the ionization will also take place within this

region.

The ions produced within the discharge chamber move with near equal

probability in all directions. Those reaching the downstream end are



extracted out through the accelerator system and form the ion exhaust

beam. The ion accelerator system consists of two closely spaced

(~1 mm) perforated grids. The inner (or screen) grid, along with the

body and the cathode, is maintained at a high positive potential

(~1 to 3 kV) with respect to the spacecraft or the test facility ground.

This grid has an open area fraction of typically 60 to 70 percent and,

as a result, nearly all of the ions reaching it are extracted. The

outer (or accelerator) grid is maintained at a negative potential

(typically-0.5 to -1.5 kV) and usually has a lower open area fraction

(-25 to 40%). The reduction in open area for the accelerator grid in-

creases the restriction to neutrals, thus reducing the neutral atom

loss rate. Both grids can be made slightly spherical in shape to im-

prove their mechanical stability to thermal gradients.

For space applications, the resulting ion beam must be current

neutralized, to avoid charge buildup on the spacecraft, and charge

neutralized, to avoid charge buildup within the ion beam. This need

for neutralization, however, is somewhat diminished in ground applica-

tions. Current neutralization may be unnecessary due to ground return

circuits while charge neutralization may be obtained from secondary

electrons at the target. The use of a neutralizer in ground applica-

tions is usually advantageous, though, because it offers the advantage

of better operating stability, together with a slightly smaller beam

spread.

Discharge Chamber Development

Throughout the development of the electron-bombardment ion

thruster, major objectives have been high electrical efficiency, high

propellant utilization, and uniformity of the ion beam current density



profile. The first two correspond to the minimization of power and

neutral propellant losses which is an obvious requirement for space

propulsion, while uniformity of the ion-beam profile will result in

more efficient use of the ion beam area. The power and neutral losses

tend to be less important in ground applications, but the uniformity is

often critical in ion machining.

In an effort to satisfy these various objectives, several different

designs have been developed. Since, as previously indicated, the bulk

of the ionization takes place within a primary-electron region that is

defined by the magnetic field, it is not surprising that many of the

improvements have been associated with changes in the magnetic field

shape. In addition, studies have shown that a good correlation exists

between the ion beam profile at the accelerator grid and the ion number
1 2density profile at the screen grid. ' Therefore, modification of this

region would be expected to strongly affect both the performance and

the ion beam profile.

The electron-bombardment thruster started as a simple cylinder
3 4with a nearly uniform magnetic field roughly parallel to its axis. '

The first change in the field shape was to make it moderately divergent

as shown in Figure 2 (a). In this design, the magnetic field strength

decreases in the downstream direction. Typical performance for mercury

propellant obtained with a 10 cm (anode diameter) thruster operating at

a beam current of 0.125 A was 500 eV/ion with a propellant utilization

of 80 percent. The ion beam profile, however, was very peaked. This

peaked profile can be explained by examining the primary electron region

within the thruster. The energetic electrons are emitted by the cathode

which is located on the centerline of the discharge chamber. These
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electrons have direct access to only a small central portion of the

discharge chamber. In order to reach the remainder of the chamber they

must experience energy depleting collisions. This results in an

electron energy distribution across the chamber with the most energetic

electrons being in the center. Since the high energy electrons are

more efficient in the ionization process than the lower energy elec-

trons, the bulk of the ionization would be expected to occur near the

centerline of the chamber as is indicated by the peaked ion beam

profile shown in Figure 2 (a). The strongly divergent field shape of

Figure 2 (b) was developed in an extensive test program. With a 15 cm

diameter thruster using mercury propellant, discharge losses of about

200 eV/ion with propellant utilizations of about 85 percent were ob-

tained at an ion beam current of 0.250 A. Much of the improvement in

performance in this design is due to the primary electrons now having

direct access to the entire discharge chamber cross-section, which

results in increased ionization near the boundaries. This explanation

is supported by the substantial improvement in the uniformity of the

ion beam profile.

Comparison of the primary electron region shape and the ion beam

profile indicates that one is nearly the mirror image of the other.

Since the ion beam density appears to be a function of the depth of

the primary electron region, this suggests that further improvement

in the uniformity of the ion beam profile could be obtained by making

the depth of the primary electron region more uniform across the

diameter. This can be explained by the residence-time theory which
789is discussed in detail in the literature ' ' and will only be

summarized here.
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If it is assumed that all ionizations take place within the pri-

mary electron region, then the probability of a neutral being ionized

is a function of its residence-time within this region. For a neutral

drifting straight through the discharge chamber, this residence-time

is then a function of the particle velocity and the depth of the region.

Thus, near the boundaries where the depth of the primary electron

region is small, fewer ionizations will occur than in the center where

the depth is much greater.
2

Recent magnetic field configurations reported by Knauer, et al.,

Beattie, Moore, and Ramsey offer different designs through which

the uniformity of the primary electron region has been increased. The

radial field thruster of Knauer, et al. is shown in Figure 2 (c) and

might be considered as a limiting case of the divergent field approach.

Here the magnetic field lines are predominantly radial and the anode

is located at the upstream end of the discharge chamber. Thus the

primary electrons have direct access to a region that extends over

the entire discharge chamber cross-section and is of nearly uniform

depth. The 15 cm diameter thruster operated by Knauer, et al. obtained

losses as low as 180 eV/ion at 90% utilization and a beam current of

0.265 A. In addition, a very flat ion beam profile was obtained.

The cusped magnet field thruster of Beattie is also a modification

of the strongly divergent field design. As shown in Figure 2 (d), a

second pole piece was added between the existing anode and cathode pole

pieces. This produced the cusped magnetic field and results in an in-

creased primary electron region depth near the boundaries. Operation

of this thruster yielded losses of about 250 eV/ion at 85% utilization

with a beam current of about 0.600 A. At the time that this



(c) RADIAL
FIELD SHAPE

/77 /.i
if /A

(d) CUSPED
FIELD SHAPE

(e)
MULTIPOLE

FIELD SHAPE

!!i
-N --.-̂ '--.x '''

Figure 2. (concluded)



10

investigation was undertaken, this design had produced the most uniform

ion beam profile reported in the literature.

The multipole design of Moore and Ramsey is shown in Figure 2 (e)

and can be considered an adaption of the '"picket fence" concept of

plasma containment in fusion research. In this design a large number

of permanent magnet pole pieces are located around the perimeter of the

discharge chamber. They are arranged so that the magnetic polarity of

adjacent pole pieces is opposite. The magnetic field is thus confined

to a small region near the pole pieces, leaving a large region of uni-

form depth and negligible field strength throughout the remainder of

the discharge chamber. This allows the energetic electrons to have

direct access to almost the entire chamber. The 12 cm diameter multi-

pole thruster operated by Ramsey on mercury propel 1 ant gave losses of

160 eV/ion at 90% utilization and a beam current of 0.325 A. The ion

beam profile was not described by Ramsey, but it would be expected to

be as uniform as any previously obtained with other designs. This ex-

pectation was realized in the results of this investigation where

profiles of the shape indicated in Figure 2 (e) were obtained.

Cesium and mercury have been the propellants in most of these in-

vestigations. However, researchers have demonstrated that electron-
IP 1C

bombardment thrusters can be operated on a variety of gases.

Argon and xenon have been the preferred gases for the reasons given

earlier.

Thruster Design

As a result of the advancement of electron-^bombardment ion source

technology, a large number of applications have been proposed for these
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devices. Typical types of applications are primary propulsion systems

for deep space missions, auxiliary propulsion systems for station-

keeping and altitude control of satellites, and the previously mention-

ed ground applications. Because of these widely different applications,

it is not possible for one ion source to fulfill all of the require-

ments. Sources having diameters from 2.5 cm to 150 cm have, therefore,

been designed, fabricated and operated. Development of a new ion source,

however, has usually been very costly in terms of both time and hard-

ware. This is primarily due to insufficient knowledge of the necessary

design and scaling parameters. For example, the 15 cm diameter strongly

divergent magnetic field design of Figure 2 (b) required a test program

of over 100 configurations in optimizing the performance. Subsequent

scaling of this design to a 30 cm diameter size by simply doubling all

of the dimensions resulted in significantly poorer performance thereby

requiring an additional test program. These problems are not unique

to the strongly divergent magnetic field design as similar difficulties
18also arose in scaling the radial magnetic field design. Scaling and

7 19 20 21 22performance correlations do exist, ' ' ' ' but they have not

eliminated the need for this trial-and-error approach.

Much of the testing involved in these programs is involved with

the reshaping of the magnetic field. Since the spacing between pole

pieces changes when a given design is scaled to a new size, the mag-

netic field also changes. This results in a field which differs in

both magnitude and shape. Determination of the necessary field

strength can be easily accomplished by use of electromagnets. The field

shape, however, is controlled primarily by the shape and location of the

pole pieces. Thus optimization of the field shape requires the testing
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of many different pole pieces. Additional tests are required in the

determination of the cathode location, discharge chamber length, and

the mode of propellant injection. The results of these tests, though,

are also dependent upon the shape and strength of the magnetic field.

With the multipole design the pole piece spacing can remain constant

over a wide range of thruster sizes, thus many of these problems would

be expected to be eliminated.

Present Investigation

The objective of this investigation was to understand the opera-

tion and to determine the necessary design and scaling relationships

for a low field strength multipole gas ion source. Although the entire

discharge chamber is of interest, most of the interesting phenomena are

found in the fringe-field regions above the anodes. For maximum utility,

the scaling relationships should involve only overall ion source per-

formance specifications, readily available propellant properties, and

experimental results that can be obtained through bench testing. Such

an approach would permit initial performance specifications to be

rapidly translated into high performance prototypes.



II. APPARATUS

The two multipole thrusters used in this investigation are shown

in Figure 3. These thrusters are conceptually related to both the
9 10cusped field design of Beattie and the multipole design of Moore

and Ramsey. Similarities with the cusped field thruster are that

thin pole pieces of soft iron are used with electromagnets between

adjacent pole pieces. The major difference from the cusped field

thruster is that more and smaller pole pieces are used, giving a larger

fraction of low-field-strength volume in the ion chamber. The major

similarities to the Moore and Ramsey design are the large number of

pole pieces used and the general ion-chamber shape. Moore and Ramsey,

however, used permanent magnets as pole pieces, with the magnetization

direction towards or away from the center of the discharge chamber.

When permanent magnets are used in the designs studied herein, they

replace the electromagnets between adjacent pole pieces rather than

becoming the pole pieces. As an additional difference, Moore and

Ramsey used much higher magnetic field strengths.

The first thruster used in this investigation is shown in Figure 3

(a) and is designated MP-I. The pole pieces are fabricated of 1.5 mm

thick soft iron and are 2.5 cm deep. For the side walls they are flat

with an internal diameter of 15 cm, while the upstream pole pieces are

cylindrical with mean diameters of 5, 10, and 15 cm. A spacing of

2.5 cm was used for all adjacent pole pieces with 1.5 mm thick aluminum

anodes located midway between each pair of pole pieces. The length of

the ion chamber could be varied in 2.5 cm steps by adding or removing

anodes and pole pieces.
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Figure 3 (a) MP-I

Sketch of 15-cm Multipole Gas Thruster.
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The original magnetic configuration used four electromagnets be-

tween each adjacent pair of pole pieces. A modified magnetic field

configuration was also used with eight electromagnets between each pair

of pole pieces. The electromagnets in each section were positioned

circumferentially in line with those in adjoining sections. All elec-

tromagnets in each configuration were connected in series, so that the

current was the same through all windings.

Dished grids were used with a 67 percent open area screen and a

43 percent open area accelerator. The thickness of both grids was about

0.4 mm, while the center-to-center hole spacing within a grid was about

2.2 mm. The grids were assembled with a interelectrode spacing of about

1 mm and operated with +1000 and -500 volts.

Tungsten wire, 0.25 mm diameter, was used for both main and neu-

tral izer cathodes. The main cathode consisted of 2 wires connected in

parallel whereas the neutralizer was a single wire loop that extended

3-cm into the beam. The outer shell of the thruster was a tube, rolled

from thin stainless steel. The backplate was Isomica. The propellant

was introduced into the annular region formed by the two corner pole

pieces, with several 6 mm holes through the pole pieces permitting flow

radially inward into the ion chamber.

Due to saturation in the magnetic circuit, which will be discussed

later, as well as thermal deterioration of the magnet windings and

anodes, a second thruster was designed. This thruster, designated

MP-II, is shown in Figure 3 (b). The pole pieces were again fabricated

of 1.5 mm thick soft iron, with the exception of the 10 cm diameter up-

stream pole piece which was 3 mm thick. Note that intermediate side

pole pieces were effectively 3 mm thick because they consisted of two



16

Electromagnets Neutralizer

Propel lant
Feed Line

Pole Pieces

Cathodes

Stainless Steel

Anodes

• •.•••••••111 ••••••••••II •••••••• •)!
I •••.••••••• 11 .• • • • •••••• 11 ••••••••••I

Figure 3 (b) MP-II

(Concluded.)



17

thicknesses of 1.5 mm thick soft iron. A center-to-center spacing of

2.7 cm was used for the pole pieces. The anodes in this design were

constructed from 1.5 mm thick stainless steel and again were positioned

midway between each pair of pole pieces. In order to protect the elec-

tromagnets from the hot discharge chamber environment, they were

located outside the discharge chamber. This was accomplished by

placing stainless-steel sealing rings between the anodes and the elec-

tromagnets. The upstream rings were flat and those on the side were

cylindrical. Each side section, consisting of an anode, sealing ring,

two pole pieces, and the electromagnets between the pole pieces, could

be added or removed as a unit. This modular approach had two ad-

vantages. First, it doubled the pole piece thickness between two

sections in order to prevent saturation problems and second, it allowed

the discharge chamber length to be varied conveniently in 2.7 cm

increments.

The disposition of electromagnets was twelve between each pair of

side pole pieces, eight between the 10 and 15 cm diameter upstream pole

pieces, and four between the 5 and 10 cm upstream pole pieces. The

electromagnets in each section were positioned so that they were not

circumferentially in line with electromagnets in adjoining sections.

This was done to avoid the saturation problems that might have otherwise

occurred. Again, all electromagents were connected in series.

Dished small hole accelerator grid (S.H.A.6.) optics were used,

with a 67 percent open area screen and a 24 percent open area accelera-

tor. The thickness of the screen and accelerator grids were 0.4 and

0.5 mm. The center-to-center hole spacing within each grid was about

2.2 mm and they were assembled with an interelectrode gap of about 1 mm.
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All data presented were obtained at +1000 and -500 volts for screen

and accelerator potentials respectively.

Tungsten wire, 0.25 mm diameter, was used for both the main and

neutralizer cathodes. The neutralizer was the same as in MP-I, however,

the number of main cathodes connected in parallel was increased from

2 to 4 in order to increase the emission capability. Propellant intro-

duction was the same as in MP-I.

Propellant flow for both thrusters was controlled with an adjust-

able leak valve and measured with a mass flowmeter. The flowrate was

maintained within ± 1 percent of the desired value while data was being

obtained. A Faraday cup probe was installed 6.5 mm downstream of the

center of the accelerator grid, which was installed convex side out for

both thrusters. Details of the Faraday probe and associated electronics
O O

are given by Wilbur. An t x $ momentum analyzer was installed with

the sensing probe 68 cm downstream of the accelerator grid. This probe

was movable transverse to the ion beam, with the path of motion passing

through the center of the ion beam. Details of the t x £ sensing probe

and its operation are given by Vahrenkamp, with the method of
or

analyzing the data given by Beattie. A Langmuir probe, movable in

two directions was used to obtain plasma data within the ion chamber.
23Details of the Langmuir probe system used are given by Wilbur. The

25data was analyzed using the numerical procedure of Beattie.

All testing was conducted in the 1.2 m diameter, 4.6 m long vacuum

facility at the Engineering Research Center of Colorado State University.

The pumping was accomplished by an 0.8 m diffusion pump together with a

liquid-nitrogen cooled liner.



III. PROCEDURE

In order to determine the capabilities of this design, the

thruster was operated over a wide range of conditions using both argon

and xenon as propellants. Flow rates of approximately 400, 500, 900,

and 1500 ma-equivalent were used with argon and of approximately 200,

400, and 600 ma-equivalent with xenon. Six discharge chamber lengths

were examined and ranged from 2.7 cm to 16.2 cm in 2.7 cm increments.

After the initial startup, the thruster was operated for about

30 minutes before taking data. This allowed both the thruster and

the thermal flowmeter to warm up and stabilize. Following this warm up

period, the propellant flow rate was adjusted to obtain the desired

flow ± 1 percent. This was accomplished by monitoring the output of

the flowmeter on a digital voltmeter and adjusting the flow to the de-

sired value ± 0.02 volts. If the flow varied beyond this range, data

acquisition was suspended until the flow was brought back within the

desired range. Once the proper flow rate had been obtained, data were

recorded. Those data included magnet current, discharge current, dis-

charge voltage, accelerator current, and beam current. Appropriate

probe currents and voltages were also included for Langmuir probe

surveys within the discharge chambers, Faraday probe surveys of the

ion beam, or t x £ momentum analyzer measurements.

In addition, the effect of varying the magnetic field strength and

of shorting various anodes to body potential was also examined. These

data were not obtained for each operating condition. Magnetic field

strength data were typically obtained at the first operating condition

following startup to insure that subsequent operation would be at the
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optimum magnetic field strength. The anode configuration data were ob-

tained only at 50 volts discharge voltage for argon and 45 volts dis-

charge voltage for xenon at each flow rate.

All propellant utilizations presented herein were corrected for

double ionization and propellant backflow. The propellant backflow

was calculated from facility pressure and the free-molecular-flow

conductance of the accelerator system. The double ionization correc-

tion was calculated using the surveys of the t x ? momentum analyzer.

The numerical corrections obtained for double ionization are shown in

the appendix.



IV. THEORY

Pertinent theory for the multipole discharge chamber includes the

containment of primary electrons, diffusion of Maxwellian electrons to

the anodes, and the escape of neutrals through the accelerator system.

The more important theory elements in these areas are described below.

Primary Electron Containment

The primary electrons should be contained within the ion chamber

so that they expend most of their energy in producing ions before being

lost to the anodes. The fringe magnetic field between adjacent pole

pieces should therefore be sufficiently high to prevent primary elec-

trons from reaching an anode without an intermediate collision. In

order to help determine the optimum magnetic field, a simple model was

developed. An iron filing map of the magnetic field within the dis-

charge chamber is shown in Figure 4. As shown, it consists of a

relatively strong magnetic field existing only near the boundary with

the majority of the chamber being essentially field free. To approxi-

mate the field of Figure 4, a magnetic field of uniform strength was

assumed to exist over a limited distance above each anode, as shown in

Figure 5 (a). Beyond the uniform field region, the field strength was

assumed to fall to zero. Picking the direction of motion for a primary

electron such that it has the deepest penetration into this fringe

field, it is evident from Figure 5 (a) that this corresponds to two

cyclotron radii. The cyclotron radius is defined as

r =— (1)rc qB u'
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Figure 4. Iron filing magnetic-field map.
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where r = cyclotron radius

m = mass of the particle

v = velocity of the particle

q = electronic charge of the particle

B = magnetic induction.

For a primary electron, the equation can be rewritten in terms of

electron energy (in eV) in the form

r = 3.37 x 10-6 (2)c b

This can be further rewritten as

2 rcB = 6.74 x 10'6 /eV (3)

where 2 r is the depth of the fringe field above the anode, and B is

the magnetic induction of this field. The product of 2 r B can
\f

therefore be thought of as the number of flux lines per unit anode

length. The distribution of these flux lines is not important. For

example, half the magnetic induction extending twice as far from the

anode would have the same effectiveness in deflecting primary electrons.
?fi

This conclusion was also shown to be valid by Robinson and Kaufman for

the more realistic case of field strength varying with distance from

anode. The required flux per unit anode length is shown in Figure 5 (b).

For comparison of units, 50 x 10~6 tesla-m equals 50 gauss-cm.

Maxwelli an Electron Diffusion

Electrons are emitted into, and ions extracted out of the discharge

chamber plasma. For equilibrium operation, these currents must be
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balanced by a Maxwell ian electron current out of the plasma to the

anodes. However, in order to reach the anodes, the Maxwell ian elec-

trons must diffuse across the magnetic field. Figure 4 indicates that

for the multipole design, the magnetic field decreases rapidly with

distance from the anode. Therefore, the diffusion process occurs only

over a small region near the boundary.

The equation of motion for electrons diffusing across the magnetic

field as a result of both voltage and density gradients is given by

Chen27 as

v = _ _ _
e m v dr n

e
m
e
v dr

where v = Maxwell ian electron drift velocity.

q = electronic charge

v = collision frequency

m = electron mass

n = Maxwell ian electron number density

T = Maxwell ian electron temperature in eV

dV^- = radial potential gradient

dne-j— = radial density gradient

The coefficients of the voltage and density gradient terms are the

mobility and the diffusion coefficients respectively:

v =^ Mobility (5)

qTp
D = ~ Diffusion (6)
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They are related by the Einstein relation:

P=/ (7)

Using these relations, the resulting electron current density can be

written as

qn0° HU dno

Finally, the predicted anode current can be determined by multiplying

this current density by the appropriate collection area.

Early theoretical studies of electron diffusion used the classical

approach in which the plasma within the magnetic field is assumed to be

free of any collective behavior, or turbulence. The diffusion of elec-

trons is then entirely due to electron-atom and coulomb collisions. In

this case, the collision frequencies for the different collision

processes are added together to obtain the total collision frequency.

This value is then used in Equation (6) to obtain the "laminar" diffu-

sion coefficient. However, diffusion coefficients obtained in this

manner have often been found to be inadequate. This discrepancy is due

to the plasma within the magnetic field region being turbulent rather
28 29than laminar as assumed. '

The presence of turbulence was deduced from the anomalously high

diffusion rates obtained experimentally, compared to the classical pre-

dictions. The first, and best known, approach toward obtaining an

effective turbulent diffusion coefficient is the empirical expression
28given by Bohm, 104 j

D - --ft (9)
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and in subsequent publications as, '

10" T
D = £ (10)

16 B

where B is the magnetic field strength. Although this relationship has

not been given a successful mathematical treatment, it has been veri-
27fied in an extensive series of experiments.

29A theoretical approach has been presented by Kaufman. This

method uses two-stream instability and a simple derivation to predict

turbulent diffusion rates. This theory assumes the plasma to be of

uniform density and uniform electron temperature. Then for small elec-

tric fields, the plasma will correspond to the laminar case since the

current density in Equation (8) would vary linearly with the electric

field. As the magnetic field is increased to give more efficient use

of the ionizing electrons, the electric field will also increase due to

the increased resistivity and thus the drift velocity in Equation (4)

will also increase. When the drift velocity exceeds a critical value,

instabilities will be amplified into plasma waves of finite amplitude.

These waves will deflect electrons thereby increasing the collision

frequency and resulting in increased diffusion. Since the magnetic

field strength is empirically selected to give efficient operation,

some degree of turbulence would be expected in most thruster designs.

These conclusions are supported by the experimental discharge-

chamber results obtained by Domitz where plasma noise, or instabil-

ity, was determined as a function of magnetic field strength. At low

field strengths, less than about 25 gauss for a 7.5 cm chamber diameter,

little or no noise was observed, which corresponds to the laminar case.

However, ion production costs (power required to produce an ion) were
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quite high. As the magnetic field was increased and ion production be-

came more efficient, there was a significant increase in the amount of

noise present indicating the onset of turbulence. However, this in-

crease in efficiency with magnetic field would not be expected to con-

tinue indefinitely since the associated increase in resistivity will

reduce electron diffusion.

The highest magnetic fields used recently in a thruster were by

Moore and Ramsey in a high field strength multipole design. In

this design the field strength was apparently high enough to greatly

inhibit electron diffusion to the anodes. A plasma anode (an anode

surface unprotected by a magnetic field) was, in fact, required to

maintain the discharge with this greatly reduced diffusion. This would

suggest that this thruster was operating beyond the onset of turbulence.

Neutral Loss

There is a discharge-chamber pressure at which the most efficient

production of ions occurs. This pressure, together with the accelera-

tor system configuration, can be used to determine the neutral loss

rate. A complete description of this neutral-loss theory is presented

in Reference 32 with only a brief summary presented herein.

The density of primary electrons increases with discharge cur-
Q

rent. Therefore, for a maximum-utilization condition at high dis-

charge current, ion production can be approximated by considering only

primary electrons. The total ion production rate N from primary

electrons is then
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where n = primary electron density

v = primary electron velocity

n = neutral density

a = ionization cross section
V- = volume of primary electron region.

The total loss rate of ions from this region is

N = n̂ .Ap (12)

where n. = ion density

v- = ion velocity

A = area of primary electron region

Equating the loss and production rates and solving for the neutral

density gives

„ .
Assuming a limiting condition where all electrons are primary elec-

trons, plasma neutrality then requires n = n. . Using the minimum ion

velocity from the Bohm criterion gives

vn. = v /me/2m. (14)

where m = electron mass

m. = ion mass.

Thus Equation (13) can be rewritten as

/m /2m.
n. = e 1 . (15)0 «<vv

All of the parameters in Equation (15) are constants, giving a constant

value for neutral density or discharge-chamber pressure, at maximum
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utilization. This constant pressure upstream of the accelerator system

implies a constant neutral-loss rate at maximum utilization regardless

of the total mass flow. Thus, maximum utilization will increase with

increasing flow rate.

The neutral-loss rate N can be obtained by combining Equation (15)

with an effective sharp-edged orifice area A for the accelerator

system and the average magnitude of the neutral velocity V .

VQ = /8kT/Trmo . (16)

where T = wall temperature

m = neutral mass.

The wall temperature should be roughly the same for all ion chambers,

thus

NQ - KnoAQ/m^ (17)

Where K includes all constants that are not a function of the ion

source configuration or the propellent. Substituting for n from

Equation (15) gives

K A /m /2m.
N = e i (18)

Assuming m = m. and then redefining K gives

NQ = m g (y /A \

Solving for K,

K - H0 m, o <yAp)/A0 (20)
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Thus the product NQ m^ a (̂ p/AJ/Ag , referred to as the neutral-loss

parameter, should be nearly constant for all ion chambers. This was

verified by the experimental results presented in Reference 32.

A wider range of chamber lengths was to be included in this in-

vestigation than in any recent study of discharge-chamber performance.

Also, more than one propellent was to be used. The possibility of cor-

relating performance for different lengths and propel!ants was there-

fore examined. The value of the neutral-loss parameter used in corre-
32lating the maximum utilization, or "knee", performance made it a

promising candidate for a more general performance correlation over a

wide range of utilizations. The neutral-loss rate N can be rewritten

as I_(l-n ) where I is the total neutral flow rate in amperes-equiva-

lent and n is the propellent utilization. Thus the neutral-loss

parameter becomes I (1-n )m. a (¥• /A }/A which allows correlation over

the entire range of utilization rather than just at the maximum value.

For a discharge-loss parameter, some means of compensating for

changes in wall area (and associated wall losses) was also required.

The simplest approach would be to multiply experimental discharge

losses (eV/ion), by the ratio of beam area to primary electron area,

A./A . The beam area A, is the same for all chamber lengths. However,

the primary electron area A (and associated ion losses to the walls)

will increase with increasing chamber length. Therefore, the ratio

A./A will decrease, and the discharge losses will increase, with in-

creasing chamber length. The distribution of actual losses is more

complicated, but the use of this simple area ratio might be expected to

give a first-order correction and therefore, it will be used.



V. EXPERIMENTAL RESULTS AND DISCUSSION

Experimental performance was measured and compared to the theory

described in the preceding section. This comparison established the

criterion for primary electron containment. It also indicated that

the plasma is turbulent within the fringe field, so that use of this

criterion would not result in excessive containment for Maxwellian

electrons. The design approach developed was verified in an independ-

ent investigation in which a 30-cm diameter ion source was. designed,

fabricated, and tested. Finally, the correlation parameters given in

the theory section were used to generalize performance for a wide range

of discharge chamber configurations.

Primary Electron Considerations

As previously indicated, there is an optimum magnetic field for

primary electron containment. Experimental results obtained for the

determination of this field for the MP-I design using argon propellent

are shown in Figure 6. Discharge losses continuously decrease with

increasing magnetic field with near minimum values being obtained at

about 8 x 10"3 tesla.

Additional tests were conducted using various anode configurations.

The configurations were:

(1) All anodes at anode potential (all anodes, or original

configuration);

(2) The anodes adjacent to the upstream corner pole pieces

at cathode potential, all others at anode potential

(corner out configuration);
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(3) The anodes adjacent to the upstream corner pole pieces

at anode potential, all others at cathode potential

(corner only configuration);

The results of these tests are given in Figure 7. With low magnet cur-

rents, performance is degraded in going from the all anodes configura-

tion to the corner only configuration, but is improved for the corner

out configuration. The corner only configuration would not operate at

magnet currents above 6 amperes, but resulted in the highest losses

where operation was possible. The all anodes and corner out configura-

tions, however, converge to yield nearly the same performance at magnet

currents of 8 to 10 amperes, which corresponds to a magnetic field of

6 x 10~3 to 8 x 10"3 tesla. Similar results obtained with xenon are

given in Figure 8.

The improved performance at low magnet currents for the corner out

configuration was an unexpected result. To explain this apparent dis-

crepancy, detailed magnetic-field measurements were made. Values were

obtained in the plane of each anode from a point midway (both radially

and axially) between adjacent pole pieces inward until the field was

negligible. Results obtained with a magnet current of 10 amperes are

shown in Figure 9 for both a side and corner location. The side

location is defined as a pair of adjacent pole pieces that are not at

either end of the chamber and is typical of most of the ion chamber.

Note that the 10 ampere magnet current corresponds to low discharge

losses in Figures 7, 8 and 9. Integration of this field over distance

normal to the anode,

/ Bd* (21)
anode
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yields the flux per unit anode length. The upper limit of « would

apply to a pair of isolated pole pieces. In an ion chamber, the

integration is carried to the first point of negligible magnetic field.

For the side pole piece location, numerical integration yielded about

88 x 10~6 tesla-meters. From Figure 5 (b), 45 x 10~6 tesla-meters

should have been sufficient to prevent the 50 eV primary electrons

present within the chamber from reaching the anode. An examination of

fringe fields at different anode locations showed the weakest field was

in the corner location. The corner field, also shown in Figure 9,

integrated to 42 x 10~6 tesla-meters at this same 10 ampere condition.

Comparison of these two integrated values with the theoretical value

from Figure 5 (b) suggests that the escape of primary electrons is con-

trolled by'the corner fringe field. This conclusion is supported by

both the improved performance at low magnet currents in the corner out

configuration and by the experimental observation that the corner alu-

minum anode was more likely to warp during operation.

This phenomena of the most current being collected in the region

where the electrons have to cross the least number of field lines has

also been observed in other thruster designs. In a study of a mildly

divergent field design by Reader, only the downstream end of the anode

was found to be necessary for operation. For the cusped field design
Q

reported by Beattie, ' about 99 percent of the current to the upstream

anode was collected by the inner edge of this electrode. Also, for the
22strongly divergent field design examined by Harbour, et al., about

94 percent of the current to the anode was collected by the downstream

end. In each case, the high current regions correspond to those having

the minimum number of field lines for the electrons to cross.
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Because of the inability of this design to show a definite optimum

magnetic field strength as well as the problems with thermal deteriora-

tion of the magnet windings and warping of the aluminum anodes, a new

thruster was designed. To obtain a uniform integrated fringe field

throughout the thruster, the corner anodes would be recessed (behind

the edges of the pole pieces) to provide the required magnetic field

integral. The magnetic field was measured in the plane of the anodes

for the new thruster with results similar to those shown in Figure 9

for MP-I. The amount of recess required was then determined by moving

the lower limit of integration back between the pole pieces until the

field integral at the corner equalled that at the side. This was found

to occur at a point 2.5 mm behind the edge of the pole pieces, or about

10 percent of the pole piece spacing.

The variation in discharge loss with magnet current is shown in

Figure 10 for both argon and xenon in the new thruster, MP-II. For

both propellents, the discharge loss decreases rapidly as the magnet

current is increased to about 4 amperes and then decreases slowly with

further increases in magnet current. Numerical integration of the

fringe field at 4 amperes, using data similar to that of Figure 9,

yielded about 54 x 10"6 tesla-meters. This is in good agreement with

the previously predicted value of 45 x 10~6 tesla-meters. However,

because discharge losses were slightly lower at higher magnet currents

and because minimizing these losses was one of the objectives, a magnet

current of 8 amperes was used for all further tests. Numerical inte-

gration of the fringe field at 8 amperes resulted in about 100 x 10~6

tesla-meters. These results indicate that the use of the criterion

given in Figure 5 for determining the required fringe field will
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produce a design that will have near minimum discharge losses. This

level of performance would be acceptable for designs used in ground

applications, however, for space applications where maximum optimiza-

tion of performance is necessary, a value 1% to 2 times the predicted

value should be used.

The distribution of current per unit anode length to the anodes

of MP-II is shown in Figure 11 for both propellents. With the exception

of the number 1 anode, the distribution is fairly uniform. This uni-

formity can be considered to be an independent check on the amount of

recess used for the corner anodes. The higher values obtained for the

number 1 anode are attributed to the fact that this anode is located

immediately upstream from the cathode. Thus, electrons are injected

directly into the fringe field in front of this anode resulting in a

higher current.

Typical ion chamber performance obtained at an electromagnet cur-

rent of 8 amperes is shown in Figure 12 for argon and Figure 13 for

xenon. As with the MP-I design, operation was not possible at this

magnet current in the corner only configuration with argon propellant.

For both propel 1 ants, there is now a definite improvement in performance

for the "all anodes" configuration compared to the other configurations.

Because of the good performance and overall uniformity of current to

the anodes as well as the ability to increase the magnetic field to an

optimum, the MP-II design was used for all further testing.

Plasma Properties and Phenomena

Plasma properties within the ion chamber were obtained using a

movable Langmuir probe. Data obtained with the 8.1 cm MP-II chamber
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are presented for both argon, Figure 14, and xenon, Figure 15. Plasma

potential, Maxwellian temperature and Maxwellian and primary densities

are shown for both propel!ants. The locations of the various pole

pieces and anodes are also indicated. The cathode and its support

occupied the open region at the upstream end of the chamber opposite

the screen.

For both argon and xenon, plasma potential is very uniform through-

out the chamber at a value slightly above the anode potential. Some of

the nonuniformity observed in the remaining properties is felt to be a

result of the analysis procedure rather than actual variations in the

plasma. The overall trends indicated, such as decreasing values near

the boundary, are, however, felt to be valid.

The effect of anode width on electron diffusion was examined. The

1.5 mm wide anodes (narrow anodes) shown in Figure 3 (b) were replaced

with 12.5 mm wide ones (wide anodes). This width is equal to one half

the pole piece spacing. Results obtained are presented in Figure 16

for argon, and Figure 17 for xenon. The results show that the narrow

anodes do not adversely affect the diffusion of electrons. The diffu-
/

sion parallel to the magnetic field is apparently rapid enough so that

the anode width is not critical. The slight decrease in performance

with wide anodes is probably due to the wider section cutting more flux

lines, thus resulting in fewer flux lines that the electrons must cross

to reach the anode. Because of these results, all subsequent testing

was conducted using the original 1.5 mm wide anodes.

Experimental performance was also compared to the theory described

in Chapter 4. The predicted electron current to the anodes was calcu-

lated for both Bohm diffusion (Equations 8 and 10) and turbulent
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Figure 15. Plasma properties for 8.1 cm chamber

length with xenon propel 1 ant.
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29diffusion (using the method of Kaufman ). In order to obtain the cur-

rent due to Bohm diffusion, voltage and density gradients within the

plasma had to be determined. Detailed Langmuir probe surveys were

obtained in the fringe field region, as well as selected points in the

bulk plasma, to determine the necessary plasma properties. Within the

fringe field, data was obtained at 2 nun increments radially and 6 mm

increments axially. Typical results are shown as approximate equal

value contour lines in Figure 18 and 19 for argon and xenon. Comparison

of these results with those presented in Figures 14 and 15 indicates

that they are similar with the exception of the Maxwellian temperature

which is lower in this case. Higher temperatures were measured at some

points within the bulk plasma, however, because this was primarily a

survey of the fringe field region, sufficient data for a higher tem-

perature contour line were not available. However, near the boundary

of the chamber the Maxwellian temperature in Figures 14 (b) and 15 (b),

does decrease to approximately the values indicated in Figures 18 (b)

and 19 (b).

From these results, as well as from the results of additional sur-

veys, the majority of the change in values was found to occur within a

distance of about one-half the pole piece spacing from the anode. How-

ever, to simplify calculations, the distance was assumed to be 1

centimeter. To further simplify the calculations, the voltage change

over this distance was assumed to be equal to the Maxwellian electron

temperature and the density change equal to the Maxwellian electron

density. Finally, to calculate the anode current, the area through

which the electrons could diffuse to each anode was assumed to have a

width of one-half the pole piece spacing. This width was chosen since
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electron diffusion would be expected to be inhibited greatly in a

region near each pole piece where the magnetic field strength is much

higher.

The results obtained from these calculations for Maxwellian elec-

tron temperatures of 5 eV and 10 eV over a range of Maxwellian electron

densities, are presented in Figure 20 for argon and Figure 21 for xenon.

Since Bohm diffusion (dashed line) involves only the electrons, the re-

sults are independent of the propel 1 ant used and are thus the same in

Figures 20 and 21. Turbulent diffusion (solid line), however, uses

two-stream instability which includes the mass of the ion. Therefore,

these results are dependent upon the propel 1 ant used and differ in the

two Figures. Note that the currents are smaller for a given density

with xenon indicating that the plasma is slightly less turbulent for

this propellant. Experimental results (solid symbols) are also pre-

sented in Figure 20 and 21. The densities and temperatures were

obtained from Langmuir probe data and the current is the corresponding

measured anode current. For both propellants, there is reasonable

agreement between theoretical and experimental results. This agreement

is even more reasonable considering that the maximum discharge currents

calculated using laminar diffusion theory were less than 5 ma for both

propellants. These results strongly suggest that the plasma within the

magnetic fringe field of the MP-II thruster is turbulent. Because of

this turbulence, the escape of Maxwellian electrons will not require

large potential differences near the anodes for the magnetic field

strengths used.
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Effect of Discharge Chamber Configuration

The effects of discharge-chamber length on performance were in-

vestigated. The chamber length was decreased from a maximum of 16.2 cm

in 2.7 cm increments for both propel!ants. The electromagnet current

was kept constant at 8 amperes, which was near optimum for both

propel 1 ants.

Discharge-chamber performance is shown in Figure 22 for argon.

Minimum discharge losses decreased as the discharge-chamber length

decreased from 16.2 cm to 8.1 cm, and then increased slightly at the

5.4 cm length. Operation was not possible with argon at the 2.7 cm

length. The maximum utilization decreased continuously with a decrease

in discharge-chamber length. Except for the increase in losses at the

5.4 cm length, these trends are in agreement with the classical effects

of discharge-chamber length. That is, the longer chamber gives a

higher probability of ionization (hence higher utilization), but it also

gives a higher probability of ion recombination on the walls of the

discharge chamber (hence higher discharge losses).

To obtain some additional insight into the trends of Figure 22,

the neutral loss rates were calculated for the five chamber lengths
32using the method of Kaufman and Cohen with a numerical value from the

center of the scatter band given therein. This method gives a single

neutral loss rate that should correspond to the "knee" of the discharge

loss versus utilization curve. Because the scatter band is quite large,

close numerical agreement should not be expected. For argon with 5.4,

8.1, 10.8, 13.5, and 16.2 cm long chambers, the predicted loss rates

were 0.486, 0.390, 0.343, 0.315, and 0.296 ampere-equivalent. For a
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neutral flow rate of 0.640 ampere-equivalent, these neutral loss rates

correspond to knee utilizations of 0.24, 0.39, 0.46, 0.51, and 0.54.

These predicted knee utilizations appear to be in good agreement with

the experimental values.

Ion beam profiles obtained in a plane 6.5 mm downstream of the

center of the accelerator system for each chamber length are shown in

Figure 23. Each profile was obtained at about the knee of the perform-

ance curve. The profiles are generally quite flat. As was the case

with the performance curves, the 5.4 cm length yields the poorest re-

sults. In calculating the flatness parameters (ratio of average current

density to peak current density) shown in Figure 23, the average current

density is determined using the beam area in the plane of the probe.

Because the grids are dished, the probe is about 1.3 cm downstream at

the edge of the beam, which gives room for radial expansion of the beam.

If the area were based on the accelerator-system diameter instead

(15 cm), the values would increase to about 0.83 - 0.88. These higher

values are believed to be better indicators of the beam flatness at the

accelerator system and thus the efficiency of use for the accelerator-

system area. The decrease in flatness parameter downstream of the

accelerator system is more a measure of the lack of collimation. The

degree of collimation is, of course, not necessarily related to the

beam flatness at the accelerator system.

For xenon, similar performance data is shown in Figures 24 and 25.

In Figure 24, in general, the minimum discharge losses decrease with

chamber length from 16.2 to 8.1 cm, then increased when it was further

shortened to 5.4 cm. Operation was possible at the 2.7 cm length with

xenon and resulted in the lowest discharge losses obtained. At this
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length, however, the discharge was unstable and subject to extinction

from any perturbation. Except for the 16.2 cm length, which was con-

strained by a cathode emission limit, the maximum utilization again

decreased with decreased chamber length. Using the same procedure as

with argon, the predicted loss rates were 0.142, 0.089, 0.072, 0.063,

0.057, and 0.054 ampere-equivalent for discharge chamber lengths of

2.7, 5.4, 8.1, 10.8, 13.5, and 16.2 cm respectively. For a 0.420

ampere-equivalent xenon flow rate, these neutral loss rates correspond

to knee utilizations of 0.66, 0.79, 0.83, 0.85, 0.86, and 0.87. These

predicted knee utilizations appear to be in reasonable agreement with

experimental data. The discrepancy between predicted values and ex-

perimental data for the three longer chambers is due, at least in part,

to the presence of double ions. As explained in the Appendix, complete

double-ion data were obtained at only one chamber length. Because of

this, the correction used for the three longer chambers was felt to be

somewhat less than it should have been.

The corresponding ion beam profiles are shown in Figure 25. As

with argon, there is a substantial decrease in beam uniformity (flatness

parameter) with the 5.4 cm length. Flatness parameters in the plane of

the grids, with the exception of the 5.4 cm length, are about 0.83 -

0.93. The flatness parameters given in Figure 25 are for the plane of

the probe.

The increase in minimum discharge losses when going from an 8.1 cm

length to a 5.4 cm length (both argon and xenon) and the decrease in

going from 5.4 cm to 2.7 cm (xenon) was not expected. It is believed

that these particular trends result from improper placement of the main

cathode with respect to the fields above the anodes. That is, the

trends would be expected to be modified if the cathode were relocated.
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The 8.1 cm length appeared to give the best compromise between

minimum discharge losses and maximum knee utilization for both propel-

lants. This length was therefore used for all remaining tests.

The effect of varying the propel 1 ant flow rate on thruster per-

formance was investigated using the 8.1 cm long chamber for both argon

and xenon. Data was obtained over approximately a 3:1 range for both

propellants. Performance data obtained with argon, Figure 26, shows

increased discharge losses and decreased utilization as the flow rate

is decreased. The minimum discharge losses were about 300 eV/ion for

the 0.922 and 1.534ampere-equivalent flows. The higher discharge losses

for the 0.416 and 0.622 ampere-equivalent flows is due to the high

neutral loss rate. For the lower flow rates, this results in a sig-

nificantly lower neutral density within the discharge chamber and thus

higher discharge losses. The ion beam profiles are presented in

Figure 27. Beam uniformity is fairly constant over the entire flow

range. For these profiles, the flatness parameter at the grids is

0.85 - 0.87.

Similar flow rate data for xenon are presented in Figures 28 and

29. In Figure 28 the maximum utilization decreases with decreasing

flow rate, but the minimum discharge loss remains nearly constant at

about 225 eV/ion. For xenon, the neutral loss rate is much lower than

for argon, thus there is little effect on neutral density and discharge

losses, for all flowrates. The ion beam profiles of Figure 29 indi-

cate even greater uniformity than was obtained with argon. This may

be due to the previously indicated lesser degree of turbulence within

the fringe field for this propellant. This could lead to increased
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ionization near the boundaries as indicated by the profiles. Flatness

parameters calculated at the grids are 0.90 - 0.93.

30-cm Diameter Multipole Source

As indicated in the first chapter, the multipole design was ex-

pected to eliminate many of the problems normally associated with the

scaling of a thruster to a different size. A 30-cm diameter multipole

ion source was designed and built using the procedure and theory present
?fi

herein. Although the performance correlations presented in the

following section were not completed at the time the source was de-

signed, the trends indicated in Figures 22 and 24 were used. That is,

that the best compromise between minimum discharge losses, maximum pro-

pellant utilization, and beam uniformity occurred at a length-to-

diameter ratio of about one-half. However, because this ratio typically

decreases with increasing diameter, a value of one-third was used.

Subsequent completion of the performance correlations has resulted in

a better basis from which this selection can be made.

The design is similar to the MP-II design with the major differ-

ences being a circumferential cathode and permanent magnets. The

magnetic fringe field was adjusted during assembly to approximate the

integral of magnetic field over distance to the anode determined ex-

perimentally with the MP-II design. Recessed corner anodes were used

to obtain the proper integrated values in the corner locations.

Without any modifications after assembly, the source was operated

with standard 30 cm diameter compensated dished grids having a 67 percent

open area screen and 43 percent open area accelerator grid. With argon as
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the propellant, the performance curve shown in Figure 30 was obtained.

Discharge losses are quite low with a minimum value of about 250 eV/ion,

the maximum utilization is about the same as was obtained with the

MP-II. It should be noted that these data have not been corrected

for either backflow or neutral propellant atoms from the vacuum facil-

ity or double ions.

An ion beam current density profile obtained 10 cm downstream from

the center of the accelerator grid is presented in Figure 31. The

profile is quite uniform over the center 20 cm of the beam. The flat-

ness parameter at the plane of the grids was determined by using addi-

tional profiles taken at 20 and 30 cm and extrapolating the value of

the peak current density to the grids. The average current density was

obtained from the area of the beam and the measured beam current. The

resultant flatness parameter value of 0.795 is excellent and is even

more impressive considering that it was obtained from an unmodified

design.

Performance Correlation

As indicated previously, because of the large range of configura-

tions tested the possibility of correlating performance for different

lengths was examined. A modified version of the neutral-loss parameter,

I (1-n )m. a(vD/
A
D)/A0> determined in Chapter 4, was used in this

initial performance correlation. Inasmuch as the accelerator system

was constant for all data, the effective open area A was omitted. Also,
i

the use of data for only one gas at a time permitted ion mass m^ and

ionization cross section a to both be omitted. These omissions left
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'̂ D̂  W'iere ^0
 1S t'ie tota^ neutral fl°w rate ™ amperes-

equivalent, n is the propellant utilization, and V /A is the ratio of

volume to outside area for the primary electron region. In a multipole

thruster, the primary electron region can be approximated as the

cylindrical volume enclosed by the accelerator system and the inside

edges of the pole pieces and anodes. The ratio V /A has the units of

meters. The discharge-loss parameter remained unchanged as the product

of discharge losses and the ratio of beam area to surface area of the

primary electron region.

The ion chamber data for both argon and xenon over a range of

propellant utilizations, flow rates and chamber lengths are plotted in

Figures 32 and 33. It is evident that these parameters give a reason-

able degree of data correlation for both propel 1 ants. The solid line

is the approximate average value of the data scatter band.

The expected neutral losses for the discharge-loss knee were calcu-
32lated using the method of Kaufman and Cohen. The results corresponded

to neutral-loss parameters of 0.0077 for argon in Figure 32 and 0.0014

for xenon in Figure 33. These values are in good agreement with the

knee of the data bands shown.

In order to determine how well the 30 cm data would agree with the

MP-II data, a more general performance correlation was obtained. Data

from Figures 32 and 33 were recalculated using the entire neutral-loss

parameter. Values for the discharge-loss parameter and the neutral-

loss parameter for the 30 cm were obtained from the data in Figure 30.

The results are presented in Figure 34. The MP-II data bands for both

argon and xenon are represented by the two shaded regions with 30 cm

data being indicated by the solid symbols. Again, a reasonable degree
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of correlation is present. The 30 cm data is at the edge of the argon

band, however, correction of this data for propellant backflow would

result in its being shifted to the right, giving even better agreement.

Design Example

From the correlation given in Figure 34, the chamber length and

discharge losses for a multipole thruster can be determined if the

diameter, propellant, effective accelerator open area and desired

utilization and beam current are specified. To further illustrate this,

the following example is given.

A 20 cm diameter multipole thruster that uses mercury propellent

is to be designed. The accelerator system has an effective open area

equal to 30 percent of the beam area. The desired knee operating con-

ditions are 95 percent utilization and a 800 ma beam current. Thus the

following values will be used in the neutral -loss parameter

I = 0.842 ampere-equivalent

nu = 95%

m. = 200 amu

a = 5 x 10'20 m2

AQ = 9.4 x 10'
3 m2

diameter = 0.2 m.

From Figure 34, the value of the neutral -loss parameter at the center

of the knee is about 7 x 10~19 amp-amu-m and the discharge loss param-

eter is about 75 eV/ion. Thus,

= 7 X 10~19 amP"amu'm
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and

(eV/ion) Ab/A = 75 eV/ion (23)

Substituting the preceding values into the neutral-loss parameter and

solving for the chamber length results in a length of 4.6 cm. Using

this length in equation (23), and solving for the knee discharge loss

gives a value of 204 eV/ion.

For this thruster, if a pole piece separation of 2.7 cm is used

(as in this investigation), two side sections would be required to ob-

tain the necessary length. However, in some cases it may be desirable

to change the pole piece spacing. For example, for long chamber

lengths where several sections would be required, a wider spacing and

thus fewer sections might be appropriate. Also, for very short chamber

lengths, smaller separations may be required. In either case, the mag-

netic field must also be adjusted so that the criterion for required

flux per unit anode length (presented in Chapters IV and V) remains

unchanged.

The 30-cm diameter multipole thruster described earlier is also a design

example for different performance objectives. The resultant perform-

ance of this unoptimized thruster has been shown to be excellent.

The use of the information given in Figure 34 will be a valuable

aid in designing future multipole thrusters by eliminating the necessity

for costly trial and error experimental programs. The example given

used ion beam current and propel 1 ant utilization as the major independ-

ent design parameters. It should be apparent that different ion source

design problems may require different independent design parameters. It
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should also be apparent that some values for design parameters will

not permit a practical solution.



VI. Conclusions

This investigation of a 15 cm diameter multipole thruster resulted

in the following conclusions:

1. A design criterion is given for the integrated magnetic flux

above an anode. The theoretical value of this criterion is

in good agreement with experimental results. Slightly lower

discharge losses, which would be desirable for space applica-

tions, can be obtained by using a value 1% to 2 times the
i

predicted value. The ion-chamber corner losses have been

evaluated and a corrective action in the form of recessing

the corner anodes has been implemented. This resulted in

lower discharge losses and nearly uniform electron current

densities to all anodes.

2. Diffusion across the magnetic fringe field region above an

anode was found to correspond to a "turbulent" plasma con-

dition. Experimental results were in agreement with both

Bohm diffusion and a diffusion controlled by two-stream

instability. This turbulent condition permits the escape of

Maxwellian electrons across the fringe field region without

large potential differences.

3. Low discharge losses and flat ion-beam profiles were obtained

with a minimum of optimization. Minimum discharge losses were

in the 300-350 eV/ion range for argon and in the 200-250 eV/ion

range for xenon. Flatness parameters in the plane of the grids

were typically in the 0.85-0.95 range, which equals, or betters,

the best values obtained previously in highly optimized designs.
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4. The performance has been correlated for a wide range of

ion-chamber lengths and operating conditions. The predicted

neutral losses for the discharge-loss knee are in good agree-

ment with the experimental data.

5. A 30-cm diameter ion source designed and built using the pro-

cedure and theory presented herein, was shown capable of low

discharge losses and flat ion-beam profiles without optimization.

Furthermore, performance data agreed well with a more general

performance correlation that included propel 1 ant type, ion-

chamber size, and accelerator system open area.

6. Because of the low magnetic field strengths and the extensive

use of flat or cylindrical sheet-metal parts as well as the

general performance correlation information, it should be

possible to rapidly translate initial performance specifica-

tions into easily fabricated, high performance prototypes.
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APPENDIX

Double Ion Correction

In order to properly evaluate the performance of a thruster,

propellant utilization data must be corrected for the presence of

double ions. The propellant utilization, or ratio of beam current to

input neutral flow rate in amperes-equivalent, assumes that all of the

measured beam current is due only to single ions. If there are double

ions, however, the measured beam current is

I B = I + + I + + (A-l)

and the measured utilization is

nu, meas ^ + +-•

The actual utilization is

n.. ,rt = (I. + I++/2)/I0 . (A-3)
U j UW I* * ' • "

The correction for utilization is thus

n.. ,rt I+ +
 I++/2u» act _ T TT (A-4)

nu, meas I+ + I++

or

^U> act = — (A-5)
u, meas 1 + I++/I+

Therefore, the actual utilization can be determined once the double to

single ion current ratio is known.
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Using an t X § momentum analyzer, this ratio was determined for

the 8.1-cm long chamber for both propel 1 ants over a range of operating

conditions and flow rates. The results are presented in Figure A-l

for argon and Figure A-2 for xenon. In general, the results follow the

expected trend of increasing values with increasing discharge current

and voltage. Since for a given discharge current, propellant utiliza-

tion was lower for the 1535 ma-equivalent flow of argon than for the

other flows, lower current ratios would also be expected.

By proper interpolation of these results, it is possible to obtain

an approximate double to single ion current ratio for any operating

condition or flow rate within the range examined. The amount of time

required to obtain and analyze a complete set of data made it imprac-

tical to acquire this data for all chamber lengths. Although the double

to single ion current ratio will change slightly with chamber length,

the information in Figures A-l and A-2 was used to correct all data

obtained with the 15 cm diameter thrusters. This was felt to be

acceptable for a first approximation, since there would be minimum

error for the data obtained at the optimum chamber length.
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Figure A-l. Effect of discharge current and voltage on double
to single ion current ratio for various flow rates
with argon propellent.
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Figure A-2. Effect of discharge current and voltage on double
to single ion current ratio for various flow rates
with xenon propellant.
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