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Abs t rac t  . 
The p r e d i c t i o n  o f  extremely h igh  wind speeds,  a t  ground 

level 0x1 the downstream s i d e  o f  a mountain range,  i s  p o s s i b l e  

by s o l v i n g  t h e  i n i t i a l  value problem f o r  a two-layered non l inea r  

asAallow-wa t e r w  model of the  atmosphere. Three d i f f e r e n t  
I 

numerical  methods are descr ibed  t o  f i n d  t h e  s o l u t i o n s  which may i ,  

1 
involve  shocks : (i) the vonNeuma:m-Richtmyer a r t i f i c i a l  v i s c o s i t y  

method, ( i i )  a -1 te r ing  schere ,  and ( i i i )  a hybr id  method. 



1. -, IF ~roduction 

OccasSonally, when air is crossing at moderate speed 

over the top of a mountain range, extremely high wind speeds 

will develop at ground level on the lee (downstream) side 

[ 5 l 8  Simple one-layered (4 1 and two-layered [31 

nonlinear "shallow-water" models of the troposphere were 
i 

designed and used to study this phenomenon. For a large , 

class of initial values, such asymmetric steady flows were 1 
found to develop quickly in time, even when the mountain 

is taken to be a symmetric parabolic arc. The numerical 

method used in [31 to produce thf: steady-state solutions 

made use of a von Neumann and Richtmyer [ G I  pseudo-viscosity 

term, which was "switched onR in regions of ncompressionm 

only. This artificial viscosity method was needed to suppress I 
the post-shock oscillations that would have otherwise 

developed in the levels and velocities of the two-layered 

model. Since these flows often contained stationary shocks 

on the lee side of the mountain, such post shock oscillations 

would have seriously masked the true nature of the steady 

states. In 131, the use of this "compression  switch^^ 

prevented the application of the artificial viscosity term 

near the upstream base of the mountain, for a physically 

realizable subset of initial values- In these cases, spurious 

oscillations developed on the upstream side of the mountain 

and continued downstream, so that the detection of a steady state 

flow over the mountain was prevented. 

I 



The present work verifies the?. indeed for all initial 

values of physical interest, steady states do develop over 

the mountain in the two-layered model. We therefore believe 

thatthe shallow-water models can be used to forecast such 

ground level strong winds on the lee side of mountains. 

The correct steady state solutions are found 

independently by the vse of three different numerical 

methods: (i) by elimin.zting the compression switch, i.e., 

so that the pseudo-viscosity term is always present; 

(ii) by using a filtering scheme; (iii) by using a hybrid 

scheme. The num@rical results obtained Erom these three methods 

have close agreement In section;:we describe the differential 

equations of the two-layered model, the parameters that 

characterize the initial values, and the nature of the 

physically relevant solutions. In section 3, we describe 

the three numerical methods and comment on their advantages 

and disadvantages. 



2. D i f f e r e n t i a l  equations., i n i t i a l  d a t a ,  and s o l u t i o n s .  

The time dependent, two-layered, long  wave, incompressible  

f l u i d  model, f o r  flow i n  a p lane  perpendicular  to  t h e  e a r t h  

and to t h e  mountain r idge ,  is governed by t h e  p a r t i a l  d i f f e r -  

e n t i a l  equagion system (3)  , f o r  t h e  v e c t o r  w = w(x, t) : 

(1) 

where 

W e  have chosen u  and 4 t o  r e p r e s e n t  t h e  h o r i z o n t a l  v e l o c i t y  and 

t h e  depth r e s p e c t i v e l y  of t h e  lowere f l u i d  l aye r , and  t h e  same 

q u a n t i t i e s  primed ( u V , $ ' )  t o  r e p r e s e n t  v e l o c i t y  and depth 

f o r  t h e  upper l a y e r  (see Figure  1). Since  we w i l l  be computing 

flows t h a t  have shoc.ks, it is  a p p r o p r i a t e  t o  :rork wi th  



represent i r ig  t h e  momentum per  u n i t  l e n g t h  (and d e n s i t y ) ,  

the lower and upper l a y e r s  r e s p e c t i v e l y .  The c o n s t a n t  q u a n t i t y ,  

r (r 5 1), is t h e  r a t i o  p1/p of t h e  d e n s i t i e s  pl o f  t h e  

upper l a y e r  and p of t h e  lower lbtyer, g denotes  t h e  

g r a v i t a t i o n a l  cons tan t ,  while  H = H(x) is t h e  formula r ep resen t -  

i n g  t h e  he igh t ,  above some datum, of  t h e  ground. We remark 

t h a t  (31 t r e a t s  a l s o  t h e  case of  a three- layered  model, 

i n  which t h e  h i g h e s t  l a y e r  is  pass ive ,  by means of a q u i t e  

s i m i l a r  system of  equat ions  t h a t  incorpora tes  a  c o n s t a n t ,  

8 ;  namely, t h e  r a t i o  of  t h e  d e n s i t i e s  of t h e  topmost and bottom- . 

most l a y e r s  and t h a t  d e a l s  s o l e l y  wi th  t h e  same dependent 1 

v a r i a b l e s  u, +, u ' ,  and $ a .  It would have been s imple t o  

formulate  t h e  corresponding d i f f e r e n c e  schemes f o r  t h i s  a 

three- layered  model, s i n c e  it i s  governed again  by a  system , 

of f o u r ,  f i r s t  o r d e r ,  p a r t i a l  d i f f e r e n t i a l  equa t ions  wi th  

d i f f e r e n t  c o n s t a n t s  i n  t h e  c o e f f i c i e n t s .  

A s  w a s  observed i n  [31, t h e  system (1) is  hyperbol ic ,  

when i t s  f o u r  c h a r a c t e r i s t i c  speeds,  dx/dt = p , are 

r e a l  and d i s t i n c t ;  namely, when t h e  r o o t s ,  p = p (x ,  t) f o r  

j = 1,2 ,3 ,4 ,  of t h e  fol lowing q u a r t i c  equat ion  are r e a l  and 

d i s t i n c t ,  pl c p 2  c p 3  < p4 ; 

We expect  t h a t  t h e  i n i t i a l  va lue  problem for (1) i s  w e l l  posed, 

when t h e  f o u r  r o o t s  a r e  r e a l  and d i s t i n c t  f o r  t h e  i n i t i a l  da ta .  



The family of  s t eady  s o l u t i o n s  (i.e., time independent) 

of (I)  is found i n  131 by s tudying  t h e  l i m i t  as t * - 
of t h e  numerical s o l u t i o n s  of i n i t i a l  va lue  problems f o r  

a u i t a b l e  cho ices  o i  impulsive i n i t i a l  da ta .  That  is, t h e  

i n i t i a l  v e l o c i t i e s  u(x,C) and u 9  ( x , O )  are set  t o  be c o n s t a n t  

and t h e  t o p s  of t h e  two l a y e r s  are i n i t i a l l y  chosen t o  be 

hor izon ta l .  I t  was found by doing many s u b s i d i a r y  numerical 

calculations with such d a t a ,  t h a t  a l l  of t h e  q u a l i t a t i v e  

f e a t u r e s  o f  t h e  s t eady  s t a t e  s o l u t i o n s  were e x h i b i t e d  by t h e  

s o l u t i o n s  t h a t  a r o s e  from a s p e c i a l  cho ice  o i  t h e  parameters 

t h a t  r e p r e s e n t  t h e  i n i t i a l  da ta .  That  is ,  when t h e  mountain 

p r o f i l e  i s  a simple pa rabo l i c  arc 

where 

simply assume t h a t  t h e  i n i t i a l  v e l o c i t i e s  are c o n s t a n t  and 

equal ,  say  

and suppose t h a t  t h e  i n i t i a l l y  c o n s t a n t  h e i g h t  of  t h e  lower l a y e r ,  

O(x,O) + H ( x ) ,  e q u a l s  t h e  i n i t i a l l y  c o n s t a n t  depth of t h e  

upper l a y e r ,  $ ' (x ,O) :  



and f i n a l l y  select a va lue  f o r  r. It then  is a p p r o p r i a t e  

to cons ide r  t h e  two dimensionless  parameters  
t 

1 

- u-, - - Fo = -*- , and Mc - 
+"ap 

d K  

as determining t h e  i n i t i a l  da ta .  

In [3] , , t h e  (Ig ,M,) p l ane  i s  d iv ided  i n t o  r eg ions ,  
' 

each producing a  d i f f e r e n t  kind of l i m i t i n g  s o l u t i o n  a s  t + -, 
from t h e  corresponding choice  of  i n i t i a l  d a t a .  I n  p a r t i c u l a r ,  

w e  reproduce a  f i g u r e  of  131 as Figure  2,  and observe  
* 

t h a t  r = 0.8 and reg ions  A, B and B' are t h e  ones t h a t  

correspond t o  p h y s i c a l l y  r e a l i z a b l e  v e l o c i t i e s  i n  t h e  atmos- 

sphere .  We note  t h a t  t h i s  model should n o t  be  used t o  make 

c a l c u l a t i o n s  f o r  d a t a  i n  region  A. For r eg ion  A, it would be 

a p p r o p r i a t e  t o  use  t h e  more convent ional  l i n e a r i z e d  theory  

i n  two s p a t i a l  dimensions, t o  d e s c r i b e  t h e  s i n u s o i d a l  lee waves 

t h a t  occur  i n  na tu re .  On t h e  o t h e r  hand, it i s  t h e  development 

of a high lee s i d e  v e l o c i t y  i n  t h e  s t eady  asymmetric s o l u t i o n s  . 
f o r  r eg ions  B and B ' ,  t h a t  l e a d s  u s  t o  recommend t h e  use  of 

t h i s  nonl inear  model t o  d e s c r i b e  and p r e d i c t  t h e  s t r o n g  wind 

phenomena on t h e  downstream s i d e  of  a  mountain range. 

I n  D l ,  a s t eady  s o l u t i o n  was approached f o r  i n i t i a l  

d a t a  i n  region  B. The s t eady  s o l u t i o n  was asymmetric over  

W e  have been informed by D. Houghton t h a t  S. C. Mehrotra 
has  communicated t h e  f a c t  t h a t  when t h e  depth  o f  t h e  upper 
l a y e r  is much l a r g e r  than  t h e  d e ~ t h  of  t h e  lower l a y e r ,  then  
t h e  s i z e  of reg ion  A i s  much smal l e r .  



c h a r a c t e r i s t i c s  which accompany t h e  s t a t i o n a r y  shock, that 

is t h u s  c a l l e d  i n t e r n a l  and which is l o c a t e d  on t h e  mountain 

side, 

Note t h a t  i n  a s t eady  s t a t e  s o l u t i o n  t h e  conse rva t ion  

o f  mass i n  t h e  lower l a y e r ,  desc r ibed  by t h e  second component 

o f  equat ion  ( I ) ,  impl ies  t h a t  $u E rn = cons tan t .  Hence, where 

t h e  depth  4 decreases ,  t h e  v e l o c i t y  u must inc rease .  Observe 

t h a t  t h i s  s i t u a t i o n  occurs  on t h e  lee s i d e  o f  t h e  mountain, 

and can exp la in  how t h e  h igh  v e l o c i t i e s  develop t h e r e .  

But w e  remark t h a t  t h e  numerical method o f  [3 ]  

produced a spur ious  s o l u t i o n  f o r  d a t a  i n  r eg ion  B'; namely, 

the i n i t i a l l y  impulsive motion f o r  B' d i d  n o t  seem t o  tend  t o  

a s t eady  s t a t e  over  t h e  mountain. I n  f a c t  t h e  curve  

s e p a r a t i n g  regions  B and B' was determined by numerical  

t he  mountain top.  Th i s  asynhet ry  was p o s s i b l e  s i n c e  p3 = 0, 

at the t o p  o f  t h e  mountain where Hx = 0 .  A schematic drawing 

o f  t h e  r e s u l t i n g  flow is taken from a f i g u r e  of 131 

and reproduced as Figure  3 here.  The c h a r a c t e r i s t i c  cu rves  

dx/dt = pi are said to  be e x t e r n a l  f o r  i = 1,4 and i n t e r n a l  

f o r  i = 2 ,  A confluence of c h a r a c t e r i s t i c s  wi th  i - 1 

(or wi th  i = 4 )  is  said t o  produce an e x t e r n a l  shock; 

a reg ion  having s t r a i g h t  c h a r a c t e r i s t i c s  f o r  i = 2 (or f o r  

i 1'3) is said to  be an i n t e r n a l  r a r e f a c t i o n  wave, whi le  i f  

i - 1 or 4 t h e  wave is c a l l e d  e x t e r n a l .  On t h e  lee side 

of t h e  mountain, p3 a l s o  approaches zero  a t  a p o i n t  on  t h e  

mountain s i d e .  Tbis  caused a confluence o f  t h e  i n t e r n a l  



experiments. That is, for region B',numerically spurious 

waves were continuously generated on the upstream side of the 

mountain and these waves traveled both up and downstream, 

thus preventing the development of a steady motion. See typical 

Figures 4a and 4b for computer plots of the heights of the 

two air layers at two different times as found by the method 

of (31.. , On the other hand, when using any of the three 

different numerical methods described in the next section, 

the spurious waves do not appear for data in region Bv. 

See Figures 5, 6, and 7 that show the solutions obtained by 

these methods, for the same data in region Bv. 

We find that for initial data in region Be, the character- 

istic v 2  = ' O  at x = -a, i.e. at the upstream edge oi the 

mountain. (Since the flow is not compressing here, the pseudo- 

viscosity term was not switched on in [ 3 ] .  But, as is 

well known the LaxdWendroff scheme is not dissipative where 

a characteristic is stationary, so that the large force term 

Hx , cause2 disturbances to begin at x = - a and move into 
the flow. This error growth could be minimized by using a 

much smaller spatial interval, and could be lessened somewhat 

by introducing a smooth transition region between the flat 

earth and the parabolic mountain edge.)We further observe 

that the flow is symmetric over the top of the mountain, until 

a weak stationary shock forms on the lee mountainside, with 

the accompanying confluence of the characteristics dx/dt = p2. 

A stronger downstream shock is also formed with the confluence 



. 
of t h e  p2 c h a r a c t e r i s t i c s .  This  s t r o n g e r  shock i s  s t a t i o n a r y  

on the mountain side f o r  some range of i n i t i a l  parameters  

i n  B e ,  bu t  i n  t h e  remainder of  t h e  B e  region  t h i s  s t r o n g  shock 

keeps moving s lowly d!ownstream. 

In  summary, we f i n d  t h a t  for any d a t a  i n  r e g i o n s  B and B ' , 
t he  wind speed near  t h e  ground on t h e  lee side is much h igher  

than  on t h e  upstream s i d e ,  i n  t h e  s t eady  state s o l u t i o n  t h a t  " 

r a p i d l y  develops. 



3. Numerical Methods 

* 
(4.) Pseudo-Viscosi t y  

The pseudo-vi scoo i ty  method (61 d e v i s ~ d  by 

von Neumann and Richtmyer, was app l ied  t o  t h e  Lax-Wendroff (L-W) 

scheme i n  " 1 . Here w e  use W t o  represen t  t h e  d i s c r e t e  

approximation t o  t h e  so lu t i on  w of  equat ion (1). Symbolically 

we set 

t 

(8 )  W ( t  + A t )  W ( t )  + A t  W t ( t )  +-7 w tk (t) , 

where t h e  t i m e  d e r i v a t i v e s  a r e  t o  be replaced by' s p a t i a l  

de r iva t i ve s  obtained from equat ion ( l) ,  and then t h e  f i r s k  

and second o rde r  s p a t i a l  d e r i v a t i v e s  a r e  t o  be replaced 

by s u i t a b l y  cen te red  d i f f e r ence  approximations. Therefore 

2 
( 9 )  w ( t  + ~ t )  = w - A ~ ( G ~ +  10 + ( A t )  {[A(G%+ K) lX+ K,.) , 

where A S aG/aw is t h e  Jacobian matr ix and where a l l  terms 

on t h e  right-hand s i d e  of (9)  a r e  t o  be evaluated  a t  W ( t ) ,  wi th 

The d i f f e r ence  expression f o r  (9)  is 



where f o r  any function $ ( x , t ) ,  we def ine  for in tcger  j ,  

97 i $ ( x j , t n )  , X = At/hx, x = j Ax, tn = n A t ,  with Ax 
j 

and A t  representing the space and t i m e  increments used 

i n  t h e  d i f f e r e n c e  scheme; t h e  operators AO and A+ are 

defined by 

while  

with the  convention f o r  f : 0, 4 ' .  or A, 

and d e f i n e  K j-4 and f 
10% 

by replacing j by j-1; furthermore, 



and finally, 

1 

The Lax-Wendroff scheme (9) is modified by the introduc- 
! 
I 

L 

tion of a pseudo-viscosity expression B in the At term as 
follows x 

where 

Here (Ax) Bx is replaced by (8 j++- Bj .,%I , with Bj 2., defined 

in a manner analogous to the way K 
jf+ 

are defined. 

In 131, a # 0 at any mesh point j where either ux - * 0 

or u i  5 0; while, if neither inequality holds, then a = 0. 



This is the compression switch, which isLtested by checking 

centered velocity differences for each layer. But, as explained 

in section 2, we found that it is desirable to keep a # 0 

everywhere. For the parabolic mountain the optimum range of a 

s 1 2.5). Note that the introduction of the dimensionless 

parameters in (7) for velocity and length implies that a dimen- 

sionless time unit is also introduced consistently by introduc- 

ing -m as the unit of time. 1n.this way, it is easy 

to verify that the dimensionless gravitational constant g = 1. 

Our calculations are performed with a = 1 and with periodic 
1 boundary conditions imposed at x = - + L, where L = 50 2nd Ax = . 

The impulsive motion could be computed as long as the 

periodicity condition does not produce interference with 

the flow near the mountain. Occasionally, L = 100 was used 

in order to prevent such interference effects. The 

Courant-Friedrichs-Lewy (CFL) stability condition for (L-W) is ' 

X(max Ipjl) 5 I. In the pseudo-viscosity scheme, it is 
j 

sometimes necessary to restrict the time step further, in 

order to maintain the stability of the scheme. 

(ii) Filter 

The filter was developed in [ll to facilitate 

the calculation of one and two dimensional aerodynamical flows 

with shocks. The filter may be inserted easily into an exist- 

ing program. For example, if the basic Lax-Wendroff scheme 

( 9 ) ,  (10) is represented i.n the operator form 



then t h e  filter scheme has  t h e  form 

That is, 

Note t h a t  i f  8 3 1, then  t h e  f i l t e r  is c a l l e d  a Shuman f i l t e r ,  

and it smooths s h o r t  wave l e n g t h  o s c i l l a t i o n s  i n  t h e  s o l u t i o n  

everywhere. Here, w e  employ 0 a s  a switch;  namely, 

. 

where z is any dependent func t ion  t h a t  i s  a good "sensorn  

of l a r g e  g r a d i e n t s ,  f o r  example, z E u t h e  v e l o c i t y  i n  t h e  

lower l a y e r ;  m i s  one less than  t h e  o r d e r  of  accuracy o f  

t h e  o p e r a t o r  T i n  ( l 2 ) ,  t h a t  i s  m = 1; and t h e  c o n s t a n t  f3 

l i es  i n  t h e  range ( O , 2 )  . For t h i s  range of f3 [ I ]  

showed t h a t  . f o r  c o n s t a n t  c o e f f i c i e n t s ,  t h e  scheme ( 1 3 ) ,  ( 1 4 )  

is s t a b l e  i f  (12) i s  s t a b l e .  I n  p r a c t i c e ,  wo found t h a t  f o r  

t h e  two-layered flow t h e  cons tan t  f3 should be chosen is! t h e  

range (0.25, 0 .75) ,  with t h e  a d d i t i o n a l  proviso  t h a t  f3 : 0  



a t  any t i m e s  when t h e  f low is s o  smooth that 

(iii) Hybrid 

Hybrid schemes were developed and analyzed i n  (21 

to f a c i l i t a t e  t h e  c a l c u l a t i o n  of  flows wi th  shocks. The i d e a  

is t o  use an o p e r a t o r  t h a t  " i n t e r p o l a t e s "  between two opera to r s :  

d f i r s t  o l d e r  a c c u r a t e  o p e r a t o r  t h a t  provides  mono- 

t o n i c ,  and s l i g h t l y  d i f f u s e d  shock p r o f i l e s ;  and a second 

order a c c u r a t e  opera to r .  Here t h e  i n t e r p o l a t i o n  is done wi th  

a switch analogous t o  (15) which is  s e n s i t i v e  to  l a r g e  

g r a d i e n t s  i n  t h e  s ~ l u t i o n .  L e t  t h e  f irst  o r d e r  Lax-Friedrichs 

scheme be denoted by 

where 



Then the hybrid scheme is suggested by the form 

That is, 

As shown in [l] and 121, the filtering and hybrid 

schemes are stable when they use the CFL condition appropriate 

to the basic operators S and T. But, the pseudo-viscosity 

scheme may impose a further restriction on the time step 

(see 161). In fact, we find that when a strong shock occurs 

in the two-layered model, it is sometimes necessary to reduce 

the time step by a fzctor of 1/2 , to achieve stability for 
the artificial viscosity scheme. 

In conclusion, we exhibit a calculation of the flow 

over a profile of the Rocky Mountains made with the filtering 

method (14) where the constant fl = 0.4. The topographical 



cross-section is t h e  one used i a  [3 ]  wi th  i n i t i a l  d a t a  g iven  

on p. 45. The c o n s t a n t  4-, = 9,000 f t . ,  and r e p r e s e n t s  

the i n i t i a l  depth  o f  t h e  lower l a y e r  which l i e s  above t h e  

5,000 f o o t  e l e v a t i o n  of  t h e  p l a i n s  e a s t  of  Denver, whi le  21,000 

f e e t  i s  t h e  i n i t i a l  depth  o f  t h e  upper l a y e r .  The i n i t i a l  

v e l o c i t i e s  a r e  u = 1 8  m/sec , and u' = 28 rn/sec , while  

r = 0.946 is t h e  ra t io  o f  t h e  d e n s i t i e s  of  t h e  two l a y e r s .  

F igure  8 shows t h e  p o s i t i o n  of t h e  t o p s  of  t h e  two l a y e r s  

a f t e r  3750 time s t e p s ,  which r e p r e s e n t s  about  5  hours and 

25 minutes of  e lapsed  time. The r e l a t i v e l y  s t eady  flow now 

e x h i b i t s  t h e  l a r g e  i n c r e a s e  i n  v e l o c i t y  i n  t h e  lower l a y e r  

on t h e  lee s i d e  of  t h e  mountain range# and a " s t a t i o n a r y  shockw 

t h a t  is near t h e  base of  t h e  mountain. The mountain p r o f i l e  

i s  t h e  lowest curve drawn. Here t h e  340 km topography is 

taken f o r  a  s l i c e  from Denver, a t  x = 1, west t o  t h e  Colorado 

border a t  x  = -4. The p l a i n s  t o  t h e  e a s t  of Denver a r e  

taken t o  be l e v e l  a t  5000 f t .  above sea  l e v e l ,  and t h e  s l o p e  

to t h e  w e s t  of  t h e  Utah-Colorado border  i s  s imulated a s  being 

c o n s t a n t  u n t i l  t h e  h e i g h t  of  5000 f t .  i s  reached a t  x  = - 6.5, 

and f u r t h e r  west t h e  ground remains f l a t .  Zero on t h e  Y a x i s  

corresponds t o  5000 f t .  above sea  l e v e l ,  whi le  3.32 on t h e  Y 

a x i s  corresponds t o  35,000 f t .  above sea  l e v e l .  
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Figure 

1 Schematic drawing of a two-layered atmosphere over a bump. 

2 Regions i n  t h e  (Mc,FO) p lane  o f  i n i t i a l  data, f o r  r = 0.8. 

The reg ions  of p h y s i c a l l y  real is t ic  i n i t i a l  d a t a  

are A, B, and 0 ' .  The shal low water model i s  a p p r o p r i a t e  

for data i n  regions  B and B'. 

3 Schematic drawing of  a f low t h a t  r e s u l t s  from i n i t i a l  

data i n  region  B. The curves  p l o t t e d  show H ,  $J + H, 
and 4 '  + + H as f u n c t i o n s t o f  x. The f low is s t e a d y  

nea r  t h e  mountain. 

l a ,  b Computer p l o t s  of  s o l u t i o n  ob ta ined  by t h e  method i n  I 3 1 ,  

f o r  i n i t i a l  d a t a ,  Fo = 0.25, Mc = 0.6, 1: = 0.8, i n  

region  B'. Note spur ious  wavelike motion t h a t  sp reads  

from upstream edge o f  mountain (a)  a t  1500 t i m e  s t e p s  and 

(b)  a t  1750 time s t e p s .  Here a r t i f i c i a l  v i s c o s i t y  

c o e f f i c i e n t  o = 2, a = ld AX = 0.05, and X < 0.85 (of - 
t h e  maximum permiss ib le  CFL r a t i o ) .  . A t  v a r i e s  i n  t i m e .  

Dimensionless t ime T i s  p r i n t e d .  

5 For t h e  i n i t i a l  d a t a  and parameter v a l u e s  used i n  Fig.  4 ,  

computer p l o t  a t  1750 t i m e  s t e p s  of t h e  s o l u t i o n  

obta ined  with t h e  pseudo-viscosi ty  method (i.e. a r t i f i c i a l  

v i s c o s i t y  t e r m  used everywhere). Flow is s t eady  nea r  

t h e  mountain. 

For t h e  i n i t i a l  d a t a  used i n  Fig. 4 and f3 = 0.5, computer 

p l o t  a t  1750 time s t e p s  o f  s o l u t i o n  ob ta ined  wi th  t h e  

f i l t e r i n g  method. Flow i s  s t eady  near  Che mountain. 



For the  i n i t i a l  data used i n  F i g .  4 and 0 = 0.25, 

computer p l o t  a t  1750 t i m e  s t e p s  of s o l u t i o n  obtained 

with the  hybrid method. Flow i s  steady near the  

Flow over the  Rocky Mountains a f t e r  3750 time s t e p s ,  
I 

about 5 hours and 25 minutes a f t e r  the i n i t i a l  t i m e .  
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