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Abstract .

The prediction of extremely high wind speeds, at ground
level on the downstream side of a mountain range, is possible
by solving the initial value problem for a two-layered nonlinear
"shallow-water" model of the atmosphere. Three different
aumerical methods are described to £ind the solutions which may . 3
involve shocks: (i) the vonNeuma:n-Richtmyer artificial viscosity V

~method, (ii) a _.ltering scheme, and (iii) a hybrid method.
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1. Ir.roduction

Occasionally, when air is crossing at moderate speed
over the top of a mountain range, extremely high wind speeds
will develop at ground level on the lee (downstream) side
(sl. Simple one-layered [4] and two-layered (3]
nonlinear "shallow-water"” models of the troposphere were
designed and used to study this phenomenon. For a large
class of initial values, such asymmetric steady flows were
found to develop quickly in time, even when the mountain
is taken to be a symmetric parabolic arc. The numerical
method used in [3] to produce thr: steady-state solutions
made use of a von Neumann and Richtmyer [6] pseudo-viscosity
term, which was "switched on" in regions of "compression"
only. This artificial viscosity method was needed to suppress
the post-shock oscillations that would have otherwise
developed in the levels and velocities of the two-layered
model. Since these flows often contained stationary shocks
on the lee side of the mountain, such post shock oscillations
would have seriously masked the true nature of the steady
states. In [3], the use of this "compression switch"
prevented the application of the artificial viscosity term
near the upstream base of the mountain, for a physically
realizable subset of initial values. 1In these cases, spurious

oscillations developed on the upstream side of the mountain

and continued downstream, so that the detection of a steady state

flow over the mountain was prevented.
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The present work verifies %hgat indeed for all initial
values of physical interest, steady states do develop over
the mountain in the two-layered model. We therefore believe
that the shallow-water models can be used to forecast such
ground level strong winds on the lee side of mountains.

The correct steady state solutions are found
independently by the use of three different numerical
methods: (i) by eliminzting the compression switch, i.e.,
so that the pseudo-viscosity term is always present;

(ii) by using a filtering scheme; (iii) by using a hybrid
scheme. The numerical results obtained from these three methods
have close agreement. In section 2 we describe the differential
equations of the two-layered model, the parameters that
characterize the initial values, and the nature of the
physically relevant solutions. 1In section 3, we describe

the three numerical methods and comment on their advantages

and disadvantages.
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2. Differential equations, initial data, and solutions.

The time dependent, two-layered, long wave, incoinpressible
fluid model, for flow in a plane perpendicular to the earth
and to the mountain ridge, is governed by the partial differ-

ential equation system [3), for the vector w = w(x,t):

where
2 2
r m ) f%—--&- 9 )
! ) m
w = G = 2 2
. ¢l J L ml )
r 3
¢(rd' + H)
0
K =g .
¢' (¢ + H)
]

We have chosen u and ¢ to represent the horizontal velocity and
the depth respectively of the lower' fluid layer, and the same
quantities primed (u',¢') to represent velocity and depth

for the upper layer (see Figure 1l). Since we will be computing

flows that have shocks, it is appropriate to iyjork with

m s ud , m' = u'¢' ,
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representing the momentum per unit length (and density), in
the lower and upper layers respectively. The constant quantity,
r (r <1), is the ratio pl/p of the densities Py of the
upper layer and p of the lower layer, g denotes the
gravitational constant, while H = H(x) is the formula represent-
ing the height, above some datum, of the ground. We remark
that [3] treats also the case of a three-layered model,
in which the highest layer is passive, by means of a quite
similar system of equations that incorporates a constant,
s; namely, the ratio of the densities of the topmost and bottom-
most layers and that deals solely with the same dependent
variables u, ¢, u', and ¢‘. It would have been simple to
formulate the corresponding difference schemes for this
three-layered model, since it is governed again by a system
of four, first order, partial differential equations with
different constants in the coefficients.

As was observed in [3], the system (1) is hyperbolic,

when its four characteristic speeds, dx/dt

U , are
real and distinct; namely, when the roots, p = uj(x,t) for
j =1,2,3,4, of the following quartic eguation are real and

distinct, Hy < Mo < Mg < Mg
(2) [(u - u)2 - g¢l[(u' - u)2 - g¢']l - r92¢ ¢' = 0.

We expect that the initial value problem for (1) is well posed,

when the four roots are real and distinct for the initial data.
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The family of steady solutions (i.e., time independent)
of (1) is found in (3] by studying the limit as t + = !
of the numerical solutions of initial value problems for
suitable choices of impulsive initial data. That is, the
initial velbcities u{x,?) and uf(x,O) are set to be constant

and the tops of the two layers are initially chosen to be

horizontal. It was found by doing many subsidiary numerical
calculations with such data, that all of the qualitative
features of the steady state solutions were exhibited by the
solutions that arose from a special choice of the parameters
that represegt the initial data. That is, when the mountain

profile is a'simple parabolic arc

I hi(x) , |x] <a,

(3) H(x) =
l o , |x|>a,
where
2
(4) h(x) = Hc[l - §§ ];
a

simply assume that the initial velocities are constant and
equal, say
o !

(5) u(x,0) = u'(x,0) = u_

and suppose that the initially constant height of the lower layer,

¢$(x,0) + H(x), equals the initially constant depth of the

upper layer, ¢'(x,0):

T RETY po . s




(6) ¢(x,0) + H(x) = ¢'(x,0) = ¢__ s

and finally select a value for r. It then is appropriate

to consider the two dimensionless parameters

i

Yo | _ B
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as determining the initial data.

In [3], the (Fo,Mc) plane is divided into regions,
each producing a different kind of limiting solution as t + =,
from the corresponding choice of initial data. In particular,
we ‘reproducé a figure of (3] as Figure 2, and observe
that r = 0.8 and regions * A, B and B' are the ones that
correspond to physically realizable velocities in the atmos-
'sphere. We note that this model should not be used to make
calculations for data in region A. For region A, it would be
appropriate to use the more conventional linearized theory
in two spatial dimensions, to describe the sinusoidal lee waves
that occur in nature. On the other hand, it is the development
of a high lee side velocity in the steady asymmetric solutions
for regions B and B', that leads us to recommend the use of
this nonlinear model to describe and predict the strong wind
phenomena on the downstream side of a mountain range.

In [3], a steady solution was approached for initial

data in region B. The steady solution was asymmetric over

We have been informed by D. Houghton that S. C. Mehrotra
has communicated the fact that when the depth of the upper

layer is much larger than the depth of the lower layer, then
the size of region A is much smaller.
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the mountain top. This asymmetry was possible since My = 0,
at the top of the mountain where Hx = 0. A schematic drawing
of the resulting flow is taken from a figure of 3]

and reproduced as Figure 3 here. The characteristic curves
dx/dt = By are said to be extornal for i = 1,4 and internal
for {1 = 2,3. A confluence of characteristics with i = 1

(or with i = 4) is said to produce an external shock;

a region having straight characteristics for i = 2 (or for

1 =+3) is said to be an internal rarefaction wave, while if
i =1 or 4 the wave is called external. On the 1lee side

qf the mountain, Mg also approaches zero at a point on the
mountain side. This caused a confluence of the internal
characteristics which accompany the stationary shock, that
is thus called internal and which is located on the mountain
side.

Note that in a steady state solution the conservation
of mass in the lower layer, described by the second component
of equation (1), implies that ¢u = m = constant. Hence, where
the depth ¢ decreases, the velocity u must increase. Observe
that this situation occurs on the lee side of the mountain,
and can explain how the high velocities develop there.

But we remark that the numerical method of [3]
produced a spurious solution for data in region B'; namely,
the initially impulsive motion for B' did not seem to tend to
a steady state over the mountain. 1In fact the curve

separating regions B and B' was determined by numerical




R et

L At

experiments. That is, for region B', numerically spurious
waves were continuously generated on the upstream side of ‘the
mountain and these waves traveled both up and downstream,
thus preventing the development of a steady motion. See typical
Figures 4a and 4b for computer plots of the heights of the
two air layers at two different times as found by the method
of [3].. On the other hand, when using any of the three
different numerical methods described in the next section,
the spurious waves do not appear for data in region B',

See Figures 5, 6, and 7 that show the solutions obtained by
these methods, for the same data in region B'.

We find that for initial data in region B', the character-
istic Ho =0 at x = =-a, i.e. at the upstream edge of the
mountain. (Since the flow is not compressing here, the pseudo-
viscosity term was not switched on in [3]. But, as is
well known the Lax-Wendroff scheme is not dissipative where
a characteristic is stationary, so that the large force term
Hx » caused disturbances to begin at x = - a and move into
the flow. This error growth céﬁld be minimized by using a
much smaller spatial interval, and could be lessened somewhat
by introducing a smooth transition region between the flat
earth and the parabolic mountain edge.) We further observe
that the flow is symmetric over the top of the mountain, until
a weak stationary shock forms on the lee mountainside, with
the accompanying confluence of the characteristics dx/dt = Hoe

A stronger downstream shock is also formed with the confluence
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of the My characteristics. This stronger shock is stationary

on the mountain side for some range of initial parameters
in B', but in the remainder of the B' region this strong shock
keeps moving slowly downstream,

In summary, we find that for any data in regions B and B’',

;
]
1

the wind speed near the ground on the lee sidzs is much higher

than on the upstream side, in the steady state solution that

I T T P T P T T

rapidly develops.
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3. Numerical Methods

(1) Pseudo-Viscosity

The pseudo-viscogsity method [6] devised by
von Neumann and Richtmyer, was applied to the Lax-Wendroff (L-W)
scheme in 1(31- Here we use W to represent the discrete
approximation to the solution w of equation (1). Symbolically

we set

4

,
. (At)
{8) W(t + At) w(t) + At Wt(t) + — th(t) ’

where the time derivatives are to be replaced by spatial
derivatives obtained from equation (1), and then the firs:
and second order spatial derivatives are to be replaced

by suitably centered difference approximations. Therefore
(9) Wik +a6) = - at(et 1) + L2 LaGa 01 &
x 2 X x "t

where A = 3G/9w is the Jacobian matrix and where all terms

on the right-hand side of (9) are to be evaluated at W(t), with

( 3
mx(r¢'+H)x + r¢m'xx
0

meld + H)  + ¢'m,

{ 0 J

The difference expression for (9) is

L
*
<
%

e
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(20) wg*l - wg -3 [Abdg + 28% K3)

=

2
A n n n n n n

|
L2
Y k)]

where for any function y(x,t), we define for integer i,

w? S w(xj,tn) ¢ A = At/Ax, xj = j Ax, t_ =n At, with Ax

n
and At representing the space and time increments used

in the difference scheme; the woperators Ao and A+ are

defined by

Af = f

o je1 = E5-1 0

while

( ]
¢j+¥A+(r¢j + Hj) )
R 0
X K. =g
7 Piaxleley + )
0

with the convention for £ = ¢, ¢', or A,

£y = % (541 *+ £5) .

j+l

and define Kj—k and fj_;i by replacing j by j-1; furthermore,

M P L SR IIET AR o W it wmer T S s it g g
- o R T .

H




12

r 1
(9441% 051) 8(re] + Hy)

0
(¢;+1+ ¢;_1’ Ao(¢j + Hj)
0 )

2 Ax Kj H %

and finally;

0
‘Ax)z‘Kt)j & % A l) A ( H + 2 H + ! jA (A ﬁl ’]
(Bgm3) [Ag 45+ H) S (by4p + dgop) by 8, myy

J
l -0

2

The Lax-Wendroff scheme (9) is modified by the introduc-
tion of a pseudo-viscosity expression B in the At term as

follows:

2
(11) W(t+at) =W = 8e1(6 + B), + K] + L85 ([a(G +x) 1 + K.}

where r .
¢u_lu_|
, 0
B = a(Ax)2 e
' o'uy|u,|
0
{ . J
Here (Ax) B, is replaced by (Bj+k' ij%), with sza defined
in a manner analogous to the way Kj+g are defined.
In (3], a # 0 at any mesh point j where either u, < 0
or u; < 0; while, if neither inequality holds, then a = 0.

)
(Aomj)[Ao(r¢5+ﬂj)] + 2:(¢j+1+¢j-1)A+(A+m5-l)]

J.
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This is the compression switch, which is tested by checking
centered velocity differences for each layer. But, as explained
in section 2, we found that it is desirable to keep a # 0
everywhere. For the parabolic mountain the optimum range of «
is (1, 2.5). Note that the introduction of the dimensionless
parameters in (7) for velocity and length implies that a dimen-
sionless time unit is also introduced consistently by introduc-
ing v§ __/g as the unit of time. In this way, it is easy

to verify that the dimensionless gravitaticnal constant g = 1.
Our calculations are performed with a = 1 and with periodic
boundary conditions imposed at x = + L, where L = 50 &2nd Ax = 7% .
The impulsive motion could be computed as long as the
periodicity condition does not produce interference with

the flow near the mountain. Occasionally, L = 100 was used
in order to prevent such interference effects. The
Courant-Friedrichs-Lewy (CFL) stability condition for (L-W) is
A(mgx lujl) < 1. In the pseudo-viscosity scheme, it is

sometimes necessary to restrict the time sfep further, in

order to maintain the stability of the scheme.

(ii) Filter

The filter was developed in [1] to facilitate
the calculation of one and two dimensional aerodynamical flows
with shocks. The filter may be inserted easily into an exist-
ing program. For example, if the basic Lax-Wendroff scheme

(9), (10) 4is represented in the operator form

s

T




(12) : Wt o p ?

then the filter scheme has the form

v.l'l-l'l - "n,
n+l vn+1 T S | ; n+1 vn+

That is,

A V1:1+1 n vn+1 .

+1 +1
"l:; VJJ‘ +71'[9:|+ Oj-x 44

%
Note that if 6 = 1, then the filter is called a Shuman filter,
and it smooths short wave length oscillations in the solution

everywhere., Here, we employ 8 as a switch; namely,

‘m
max l2g41-2, 1

where z is any dependent function that is a good "sensor"

of large gradients, for example, z = u the velocity in the
lower layer; m is one less than the order of accuracy of

the operator T in (12), that is m = 1; and the constant 8

lies in the range (0,2). For this range of 8 [1)

showed that . for constant coefficients, the scheme (13), (14)
is stable if (12) is stable. In practice, we found that for
the two-layered flow the constant B should be chosen in the

range (0.25, 0.75), with the additional proviso that 8 = 0

e g p g
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at any times when the flow is so smooth that

Ax
max |A+uj| < —— .

(1ii) Hybrid

Hybrid schemes were developed and analyzed in (2]
to facilitate the calculation of flows with shocks. The idea
is to use an operator that "interpolates" between two operators:
a first ovder accurate operator that provides mono-
tonic, and slightly diffused shock profiles; and a second
oraer accurate operator. Here the interpolation is done with
a switch analogous to (15) which is sensitive to large
gradients in the solution. Let the first order Lax=Friedrichs

scheme be denoted by

(16) w‘j”l = s W]
where
n_1 n n n
S Wy =3 (W) + W) + At W,
=1 W .+ Wt ) - Ate + K)°
2 Ui+l j=1 X 3
_ 1 ,.n n _ A n n
=7 (Wyyy + Wjo1) = 3 [84G5 + 2 Ax Kj]

e wh . 1 n _ n _ A n n
wj + 5 (A+wj A+Wj-1) V3 [AOGj + 2 Ax xj] .

U
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Then the hybrid scheme is suggested by the form

Wl = (05 + (1-0)T)WD .

3 j
That is'

+1 _ 0 _ A n -
a7 wy W3 = 3 [8gG5 + 2 Ax K1 + 3 [05,5,84W5 = 05 5,8, _11
n n n

- 1 ej_;ﬁ) Aj_;ﬁ(A GJ 1 + 8x KJ ;ﬁ) + (1-6. )(‘< )]

where

oy = 7 (0343 * O30 -

As shown in [1l] and [2], the filtering and hybrid
schemes are stable when they use the CFL condition appropriate
to the basic operators S and T. But, the pseudo-viscosity
scheme may impose a further restriction on the time step
(see |6]). In fact, we find that when a strong shock occurs
in the two-layered model, it is sometimes necessary to reduce
the time step by a factor of 1/2 , to achieve stability for
the artificial viscosity scheme.

In conclusion, we exhibit a calculation of the flow
over a profile of the Rocky Mountains made with the filtering

method (14) where the constant 8 = 0.4. The topographical

imeer M AN g 0 e

wr\v

P

Tt




17
cross-gsection is the one us2d in (3] with initial data given
on p. 45. The constant ¢__ = 9,000 £t., and represents
the initial depth of the lower layer which lies above the
5,000 foot elevation of the plains east of Denver, while 21,000
feet is the initial depth of the upper layer. The initial
velocities are u = 18 m/sec , and u' = 28 m/sec , while
r = 0,946 is the ratio of the densities of the two layers.
Figure 8 shows the position of the tops of the two layers
after 3750 time steps, which represents about 5 hours and
25 minutes of elapsed time. The relatively steady flow now
exhibits the large increase in velocity in the lower layer
on the lee side of the mountain range, and a "stationary shock"
that is near the base of the mountain. The mountain profile
is the lowest curve drawn. Here the 340 km topography is
taken for a slice from Denver, at x = 1, west to the Colorado
border at x = -4, The plains to the east of Denver are
taken to be level at 5000 ft. above sea level, and the slope
to the west of the Utah-Colorado border is simulated as being
constant until the height of 5000 ft. is reached at x = - 6.5,
and further west the ground remains flat. Zero on the Y axis
corresponds to 5000 ft.‘above sea level, while 3.32 on the Y

axis corresponds to 35,000 ft. above sea level.

",dJ
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Many studies have been made of strong mountain winds.
The following representative works consider two space dimensional
models of the flow in a vertical plane. They are concerned
with giving a descriptioa that is valid throughout the plane

and not just near the ground. 1In particular, some interesting
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CAPTIONS

Figure

1
2

4a, b

Schematic drawing of a two-layered atmosphere over a bump.
Regions in the (Mc,Fo) plane of initial data, for r = 0.8,
The regions of physically realistic initial data

are A, B, and B'. The shallow water model is appropriate
for data in regions B and B°‘.

Schematic drawing of a flow that results from initial

data in region B. The curves plotted show H, ¢ + H,

and ¢' + ¢ + H as functions of x. The flow is steady
near the mountain.

Computer plots of solution obtained by the method in (3],
for initial data, Fq = 0.25, M, = 0.6, r = 0.8, in
region B'. Note spurious wavelike motion that spreads
from upstream edge of mountain (a) at 1500 time steps and
(b) at 1750 time steps. Here artificial viscosity‘
coefficient ¢« = 2, a =1, Ax = 0.05, and A < 0.85 (of

the maximum permissible CFL ratio). At varies in time.
Dimensionless time T is printed. |

For the initial data and parameter values used in Fig. 4,
computer plot at 1750 time steps of the solution
obtained with the pseudo-viscosity method (i.e. artificial
viscosity term used everywhere). Flow is steady near

the mountain.

For the initial data used in Fig. 4 and 8 = 0.5, computer
plot at 1750 time steps of solution obtained with the

filtering method. Flow is steady near the mountain.
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For the initial data used in Fig. 4 and 8 = 0,25,
computer plot at 1750 time steps of solution obtained
with the hybrid method. Flow is steady near the
mountain,

rléw over the Rocky Mountains after 3750 tiﬁe steps,

about 5 hours and 25 minutes after the initial time.
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