15 research outputs found

    Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons

    Get PDF
    Metamaterials and plasmonics are powerful tools for unconventional manipulation and harnessing of light. Metamaterials can be engineered to possess intriguing properties lacking in natural materials, such as negative refractive index. Plasmonics offers capabilities to confine light in subwavelength dimensions and to enhance light-matter interactions. Recently,graphene-based plasmonics has revealed emerging technological potential as it features large tunability, higher field-confinement and lower loss compared to metal-based plasmonics. Here,we introduce hybrid structures comprising graphene plasmonic resonators efficiently coupled to conventional split-ring resonators, thus demonstrating a type of highly tunable metamaterial, where the interaction between the two resonances reaches the strong-coupling regime. Such hybrid metamaterials are employed as high-speed THz modulators, exhibiting over 60% transmission modulation and operating speed in excess of 40 MHz. This device concept also provides a platform for exploring cavity-enhanced light-matter interactions and optical processes in graphene plasmonic structures for applications including sensing, photo-detection and nonlinear frequency generation

    High Frequency Magnetometry with an Ensemble of Spin Qubits in Hexagonal Boron Nitride

    Full text link
    Sensors based on spin qubits in 2D crystals offer the prospect of nanoscale sensing volumes, where the close proximity of the sensor and source could provide access to otherwise inaccessible signals. For AC magnetometry, the sensitivity and frequency range is typically limited by the noise spectrum, which determines the qubit coherence time. This poses a problem for III-V materials, as the non-zero spin of the host nuclei introduces a considerable source of magnetic noise. Here, we overcome this with a sensing protocol based on phase modulated continuous concatenated dynamic decoupling, which extends the coherence time towards the T1T_1 limit at room temperature and enables tuneable narrowband AC magnetometry. We demonstrate the protocol with an ensemble of negatively charged boron vacancies in hexagonal boron nitride, detecting in-plane AC fields within ±150 MHz\pm 150~\mathrm{MHz} of the electron spin resonance, and out-of-plane fields in the range of ∼10−150 MHz\sim10-150~\mathrm{MHz}. We measure an AC magnetic field sensitivity of ∼1 μT/Hz\sim1~\mathrm{\mu T/\sqrt{Hz}} at ∼2.5 GHz\sim2.5~\mathrm{GHz}, for a sensor volume of ∼0.1 μm3\sim0.1~\mathrm{\mu m^3}, and demonstrate that the sensor can reconstruct the AC magnetic field from a wire loop antenna. This work establishes the viability of spin defects in 2D materials for high frequency magnetometry, demonstrating sensitivities that are comparable to nitrogen vacancy centres in diamond for microscopic sensing volumes, and with wide-ranging applications across science and technology

    Interfacing a quantum dot spin with a photonic circuit

    Get PDF
    A scalable optical quantum information processor is likely to be a waveguide circuit with integrated sources, detectors, and either deterministic quantum-logic or quantum memory elements. With microsecond coherence times, ultrafast coherent control, and lifetime-limited transitions, semiconductor quantum-dot spins are a natural choice for the static qubits. However their integration with flying photonic qubits requires an on-chip spin-photon interface, which presents a fundamental problem: the spin-state is measured and controlled via circularly-polarised photons, but waveguides support only linear polarisation. We demonstrate here a solution based on two orthogonal photonic nanowires, in which the spin-state is mapped to a path-encoded photon, thus providing a blue-print for a scalable spin-photon network. Furthermore, for some devices we observe that the circular polarisation state is directly mapped to orthogonal nanowires. This result, which is physically surprising for a non-chiral structure, is shown to be related to the nano-positioning of the quantum-dot with respect to the photonic circuit

    Waveguide Coupled Resonance Fluorescence from On-Chip Quantum Emitter

    Get PDF
    Resonantly driven quantum emitters offer a very promising route to obtain highly coherent sources of single photons required for applications in quantum information processing (QIP). Realizing this for on-chip scalable devices would be important for scientific advances and practical applications in the field of integrated quantum optics. Here we report on-chip quantum dot (QD) resonance fluorescence (RF) efficiently coupled into a single-mode waveguide, a key component of a photonic integrated circuit, with a negligible resonant laser background and show that the QD coherence is enhanced by more than a factor of 4 compared to off-resonant excitation. Single-photon behavior is confirmed under resonant excitation, and fast fluctuating charge dynamics are revealed in autocorrelation g(2) measurements. The potential for triggered operation is verified in pulsed RF. These results pave the way to a novel class of integrated quantum-optical devices for on-chip quantum information processing with embedded resonantly driven quantum emitters

    Inverse Design of Whispering-Gallery Nanolasers with Tailored Beam Shape and Polarization

    Full text link
    [EN] Control over the shape and polarization of the beam emitted by a laser source is important in applications such as optical communications, optical manipulation and high-resolution optical imaging. In this paper, we present the inverse design of monolithic whispering-gallery nanolasers which emit along their axial direction with a tailored laser beam shape and polarization. We design and experimentally verify three types of submicron cavities, each one emitting into a different laser radiation mode: an azimuthally polarized doughnut beam, a radially polarized doughnut beam and a linearly polarized Gaussian-like beam. The measured output laser beams yield a field overlap with respect to the target mode of 92%, 96%, and 85% for the azimuthal, radial, and linearly polarized cases, respectively, thereby demonstrating the generality of the method in the design of ultracompact lasers with tailored beams.This work was supported by the Engineering and Physical Sciences Research Council (Grant Nos. EP/L015331/1 and EP/S001557/1).Rodriguez-Díez, I.; Krysa, A.; Luxmoore, IJ. (2023). Inverse Design of Whispering-Gallery Nanolasers with Tailored Beam Shape and Polarization. ACS Photonics. 10(4):968-976. https://doi.org/10.1021/acsphotonics.2c0116596897610

    Inverse Design of Whispering-Gallery Nanolasers with Tailored Beam Shape and Polarization

    No full text
    Control over the shape and polarization of the beam emitted by a laser source is important in applications such as optical communications, optical manipulation and high-resolution optical imaging. In this paper, we present the inverse design of monolithic whispering-gallery nanolasers which emit along their axial direction with a tailored laser beam shape and polarization. We design and experimentally verify three types of submicron cavities, each one emitting into a different laser radiation mode: an azimuthally polarized doughnut beam, a radially polarized doughnut beam and a linearly polarized Gaussian-like beam. The measured output laser beams yield a field overlap with respect to the target mode of 92%, 96%, and 85% for the azimuthal, radial, and linearly polarized cases, respectively, thereby demonstrating the generality of the method in the design of ultracompact lasers with tailored beams

    Erratum to: Metamaterial-based graphene thermal emitter

    No full text

    Graphene-Metamaterial Photodetectors for Integrated Infrared Sensing

    No full text
    In this work we study metamaterial-enhanced graphene photodetectors operating in the mid-IR to THz. The detector element consists of a graphene ribbon embedded within a dual-metal split ring resonator, which acts like a cavity to enhance the absorption of electromagnetic radiation by the graphene ribbon, while the asymmetric metal contacts enable photothermoelectric detection. Detectors designed for the mid-IR demonstrate peak responsivity (referenced to total power) of ∼120 mV/W at 1500 cm–1 and are employed in the spectroscopic evaluation of vibrational resonances, thus demonstrating a key step toward a platform for integrated surface-enhanced sensing.ISSN:2330-402
    corecore