13 research outputs found

    Counting Below the Curve: Combinatorial Proofs of Integral Formulas

    No full text
    Note from Isaac Hodes: the presentation and subsequent defense was the entirety of the comps. Student indicates no adviser assigned

    pileup.js: v0.6.4

    No full text
    better handle BAI chunks (fixes #405 and #406

    hammerlab/ketrew: Ketrew 3.1.0: Performance and UI improvements

    No full text
    Improve display of programs and logs in the WebUI. Add more User-level notifications for async-errors. Add indexes to the DB. Improve node-list display in the TextUI. Remove and clean-out some code. Add option ~safe_ids to job submission (on by default). Fix build with Lwt ≥ 3.0.0. Improve "Getting Started" documentation

    Computational Pipeline for the PGV-001 Neoantigen Vaccine Trial

    No full text
    This paper describes the sequencing protocol and computational pipeline for the PGV-001 personalized vaccine trial. PGV-001 is a therapeutic peptide vaccine targeting neoantigens identified from patient tumor samples. Peptides are selected by a computational pipeline that identifies mutations from tumor/normal exome sequencing and ranks mutant sequences by a combination of predicted Class I MHC affinity and abundance estimated from tumor RNA. The personalized genomic vaccine (PGV) pipeline is modular and consists of independently usable tools and software libraries. We hope that the functionality of these tools may extend beyond the specifics of the PGV-001 trial and enable other research groups in their own neoantigen investigations

    Mobility–Lifetime Products in MAPbI<sub>3</sub> Films

    No full text
    Photovoltaic solar cells operate under steady-state conditions that are established during the charge carrier excitation and recombination. However, to date no model of the steady-state recombination scenario in halide perovskites has been proposed. In this Letter we present such a model that is based on a single type of recombination center, which is deduced from our measurements of the illumination intensity dependence of the photoconductivity and the ambipolar diffusion length in those materials. The relation between the present results and those from time-resolved measurements, such as photoluminescence that are commonly reported in the literature, is discussed

    What Is the Mechanism of MAPbI<sub>3</sub> p‑Doping by I<sub>2</sub>? Insights from Optoelectronic Properties

    No full text
    Obtaining insight into, and ultimately control over, electronic doping of halide perovskites may improve tuning of their remarkable optoelectronic properties, reflected in what appear to be low defect densities and as expressed in various charge transport and optical parameters. Doping is important for charge transport because it determines the electrical field within the semiconducting photoabsorber, which strongly affects collection efficiency of photogenerated charges. Here we report on intrinsic doping of methylammonium lead tri-iodide, MAPbI<sub>3</sub>, as thin films of the types used for solar cells and LEDs, by I<sub>2</sub> vapor at a level that does not affect the optical absorption and leads to a small (<20 meV, ∼9 nm) red shift in the photoluminescence peak. This I<sub>2</sub> vapor treatment makes the films 10× more electronically conductive in the dark. We show that this change is due to p-type doping because we find their work function to increase by 150 mV with respect to the ionization energy (valence band maximum), which does not change upon I<sub>2</sub> exposure. The majority carrier (hole) diffusion length increases upon doping, making the material less ambipolar. Our results are well-explained by I<sub>2</sub> exposure decreasing the density of donor defects, likely iodide vacancies (V<sub>I</sub>) or defect complexes, containing V<sub>I</sub>. Invoking iodide interstitials, which are acceptor defects, seems less likely based on calculations of the formation energies of such defects and is in agreement with a recent report on pressed pellets
    corecore