8 research outputs found
Insulin Receptor and the Kidney: Nephrocalcinosis in Patients with Recessive INSR Mutations.
BACKGROUND/AIMS: Donohue and Rabson-Mendenhall syndrome are rare autosomal recessive disorders caused by mutations in the insulin receptor gene, INSR. Phenotypic features include extreme insulin resistance, linear growth retardation, paucity of fat and muscle, and soft tissue overgrowth. The insulin receptor is also expressed in the kidney, where animal data suggest it plays a role in glomerular function and blood pressure (BP) regulation, yet such a role in the human kidney is untested. Patients with biallelic INSR mutations provide a rare opportunity to ascertain its role in man. METHODS: Retrospective review of patients with INSR mutations. Data for BP, renal imaging, plasma creatinine and electrolyte levels, as well as urine protein, albumin and calcium excretion were sought from the treating clinicians. RESULTS: From 33 patients with INSR mutations, data were available for 17 patients. Plasma creatinine was low (mean ± SD: 25 ± 9 μmol/l) and mean plasma electrolyte concentrations were within the normal range (n = 13). Systolic BP ranged between the 18th and 91st percentile for age, sex, height and weight (n = 9; mean ± SD: 49 ± 24). Twenty-four-hour urinary calcium data were available from 10 patients and revealed hypercalciuria in all (mean ± SD: 0.32 ± 0.17 mmol/kg/day; normal <0.1). Nephrocalcinosis was present in all patients (n = 17). Urinary albumin excretion (n = 7) ranged from 4.3-122.5 μg/min (mean ± SD: 32.4 ± 41.0 μg/min; normal <20). CONCLUSIONS: INSR dysfunction is associated with hypercalciuria and nephrocalcinosis. No other consistent abnormality of renal function was noted. Normotension and stable glomerular function with only moderate proteinuria is in contrast to genetically modified mice who have elevated BP and progressive diabetic nephropathy
Amphipathic helices target perilipins 1-3 to lipid droplets
Perilipins (PLINs) play a key role in energy storage by orchestrating the activity of lipases on the surface of lipid droplets. Failure of this activity results in severe metabolic disease in humans. Unlike all other lipid droplet-associated proteins, PLINs localize almost exclusively to the phospholipid monolayer surrounding the droplet. To understand how they sense and associate with the unique topology of the droplet surface, we studied the localization of human PLINs inSaccharomyces cerevisiae,demonstrating that the targeting mechanism is highly conserved and that 11-mer repeat regions are sufficient for droplet targeting. Mutations designed to disrupt folding of this region into amphipathic helices (AHs) significantly decreased lipid droplet targetingin vivoandin vitro Finally, we demonstrated a substantial increase in the helicity of this region in the presence of detergent micelles, which was prevented by an AH-disrupting missense mutation. We conclude that highly conserved 11-mer repeat regions of PLINs target lipid droplets by folding into AHs on the droplet surface, thus enabling PLINs to regulate the interface between the hydrophobic lipid core and its surrounding hydrophilic environment.This work was supported by grants from The Wellcome Trust (091551 and 107064 to DBS), the U.K. NIHR Cambridge Biomedical Research Centre, the Medical Research Council (G0701446 to SS and a Doctoral training grant awarded to the University of Cambridge for ERR), core facilities at the MRC Metabolic Diseases Unit (MC_UU_12012/5) and by the Innovative Medicines Initiative Joint Undertaking, EMIF-Metabolism award.This is the final version of the article. It first appeared from ASBMB via https://doi.org/10.1074/jbc.M115.69104
The Mycobacterium tuberculosis DosR Regulon Assists in Metabolic Homeostasis and Enables Rapid Recovery from Nonrespiring Dormancy ▿ †
Mycobacterium tuberculosis survives in latently infected individuals, likely in a nonreplicating or dormancy-like state. The M. tuberculosis DosR regulon is a genetic program induced by conditions that inhibit aerobic respiration and prevent bacillus replication. In this study, we used a mutant incapable of DosR regulon induction to investigate the contribution of this regulon to bacterial metabolism during anaerobic dormancy. Our results confirm that the DosR regulon is essential for M. tuberculosis survival during anaerobic dormancy and demonstrate that it is required for metabolic processes that occur upon entry into and throughout the dormant state. Specifically, we showed that regulon mechanisms shift metabolism away from aerobic respiration in the face of dwindling oxygen availability and are required for maintaining energy levels and redox balance as the culture becomes anaerobic. We also demonstrated that the DosR regulon is crucial for rapid resumption of growth once M. tuberculosis exits an anaerobic or nitric oxide-induced nonrespiring state. In summary, the DosR regulon encodes novel metabolic mechanisms essential for M. tuberculosis to survive in the absence of respiration and to successfully transition rapidly between respiring and nonrespiring conditions without loss of viability
Recommended from our members
Insulin Receptor and the Kidney: Nephrocalcinosis in Patients with Recessive INSR Mutations.
BACKGROUND/AIMS: Donohue and Rabson-Mendenhall syndrome are rare autosomal recessive disorders caused by mutations in the insulin receptor gene, INSR. Phenotypic features include extreme insulin resistance, linear growth retardation, paucity of fat and muscle, and soft tissue overgrowth. The insulin receptor is also expressed in the kidney, where animal data suggest it plays a role in glomerular function and blood pressure (BP) regulation, yet such a role in the human kidney is untested. Patients with biallelic INSR mutations provide a rare opportunity to ascertain its role in man. METHODS: Retrospective review of patients with INSR mutations. Data for BP, renal imaging, plasma creatinine and electrolyte levels, as well as urine protein, albumin and calcium excretion were sought from the treating clinicians. RESULTS: From 33 patients with INSR mutations, data were available for 17 patients. Plasma creatinine was low (mean ± SD: 25 ± 9 μmol/l) and mean plasma electrolyte concentrations were within the normal range (n = 13). Systolic BP ranged between the 18th and 91st percentile for age, sex, height and weight (n = 9; mean ± SD: 49 ± 24). Twenty-four-hour urinary calcium data were available from 10 patients and revealed hypercalciuria in all (mean ± SD: 0.32 ± 0.17 mmol/kg/day; normal <0.1). Nephrocalcinosis was present in all patients (n = 17). Urinary albumin excretion (n = 7) ranged from 4.3-122.5 μg/min (mean ± SD: 32.4 ± 41.0 μg/min; normal <20). CONCLUSIONS: INSR dysfunction is associated with hypercalciuria and nephrocalcinosis. No other consistent abnormality of renal function was noted. Normotension and stable glomerular function with only moderate proteinuria is in contrast to genetically modified mice who have elevated BP and progressive diabetic nephropathy