148 research outputs found

    High-resolution imaging of myelin loss and degradation in neurodegenerative diseases with birefringence microscopy

    Get PDF
    Please click Additional Files below to see the full abstract

    Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results

    Get PDF
    We report on the first stages of a clinical study designed to test elastic-scattering spectroscopy, mediated by fiberoptic probes, for three specific clinical applications in breast-tissue diagnosis: (1) a transdermal-needle (interstitial) measurement for instant diagnosis with minimal invasiveness similar to fine-needle aspiration but with sensitivity to a larger tissue volume, (2) a hand-held diagnostic probe for use in assessing tumor/resection margins during open surgery, and (3) use of the same probe for real-time assessment of the `sentinel' node during surgery to determine the presence or absence of tumor (metastatic). Preliminary results from in vivo measurements on 31 women are encouraging. Optical spectra were measured on 72 histology sites in breast tissue, and 54 histology sites in sentinel nodes. Two different artificial intelligence methods of spectral classification were studied. Artificial neural networks yielded sensitivities of 69% and 58%, and specificities of 85% and 93%, for breast tissue and sentinel nodes, respectively. Hierarchical cluster analysis yielded sensitivities of 67% and 91%, and specificities of 79% and 77%, for breast tissue and sentinel nodes, respectively. These values are expected to improve as the data sets continue to grow and more sophisticated data preprocessing is employed. The study will enroll up to 400 patients over the next two years

    Quantitative birefringence microscopy for imaging the structural integrity of CNS myelin following circumscribed cortical injury in the rhesus monkey

    Get PDF
    Significance: Myelin breakdown is likely a key factor in the loss of cognitive and motor function associated with many neurodegenerative diseases. Aim: New methods for imaging myelin structure are needed to characterize and quantify the degradation of myelin in standard whole-brain sections of nonhuman primates and in human brain. Approach: Quantitative birefringence microscopy (qBRM) is a label-free technique for rapid histopathological assessment of myelin structural breakdown following cortical injury in rhesus monkeys. Results: We validate birefringence microscopy for structural imaging of myelin in rhesus monkey brain sections, and we demonstrate the power of qBRM by characterizing the breakdown of myelin following cortical injury, as a model of stroke, in the motor cortex. Conclusions: Birefringence microscopy is a valuable tool for histopathology of myelin and for quantitative assessment of myelin structure. Compared to conventional methods, this label-free technique is sensitive to subtle changes in myelin structure, is fast, and enables more quantitative assessment, without the variability inherent in labeling procedures such as immunohistochemistry.Published versio

    The future of medical diagnostics: Review paper

    Get PDF
    While histopathology of excised tissue remains the gold standard for diagnosis, several new, non-invasive diagnostic techniques are being developed. They rely on physical and biochemical changes that precede and mirror malignant change within tissue. The basic principle involves simple optical techniques of tissue interrogation. Their accuracy, expressed as sensitivity and specificity, are reported in a number of studies suggests that they have a potential for cost effective, real-time, in situ diagnosis. We review the Third Scientific Meeting of the Head and Neck Optical Diagnostics Society held in Congress Innsbruck, Innsbruck, Austria on the 11th May 2011. For the first time the HNODS Annual Scientific Meeting was held in association with the International Photodynamic Association (IPA) and the European Platform for Photodynamic Medicine (EPPM). The aim was to enhance the interdisciplinary aspects of optical diagnostics and other photodynamic applications. The meeting included 2 sections: oral communication sessions running in parallel to the IPA programme and poster presentation sessions combined with the IPA and EPPM posters sessions. © 2011 Jerjes et al; licensee BioMed Central Ltd

    A Partially Supervised Bayesian Image Classification Model with Applications in Diagnosis of Sentinel Lymph Node Metastases in Breast Cancer

    Full text link
    A method has been developed for the analysis of images of sentinel lymph nodes generated by a spectral scanning device. The aim is to classify the nodes, excised during surgery for breast cancer, as normal or metastatic. The data from one node constitute spectra at 86 wavelengths for each pixel of a 20*20 grid. For the analysis, the spectra are reduced to scores on two factors, one derived externally from a linear discriminant analysis using spectra taken manually from known normal and metastatic tissue, and one derived from the node under investigation to capture variability orthogonal to the external factor. Then a three-group mixture model (normal, metastatic, non-nodal background) using multivariate t distributions is fitted to the scores, with external data being used to specify informative prior distributions for the parameters of the three distributions. A Markov random field prior imposes smoothness on the image generated by the model. Finally, the node is classified as metastatic if any one pixel in this smoothed image is classified as metastatic. The model parameters were tuned on a training set of nodes, and then the tuned model was tested on a separate validation set of nodes, achieving satisfactory sensitivity and specificity. The aim in developing the analysis was to allow flexibility in the way each node is modelled whilst still using external information. The Bayesian framework employed is ideal for this.Comment: 31 pages, 7 figure

    Towards minimally-invasive, quantitative assessment of chronic kidney disease using optical spectroscopy

    Get PDF
    The universal pathologic features implicated in the progression of chronic kidney disease (CKD) are interstitial fibrosis and tubular atrophy (IFTA). Current methods of estimating IFTA are slow, labor-intensive and fraught with variability and sampling error, and are not quantitative. As such, there is pressing clinical need for a less-invasive and faster method that can quantitatively assess the degree of IFTA. We propose a minimally-invasive optical method to assess the macro-architecture of kidney tissue, as an objective, quantitative assessment of IFTA, as an indicator of the degree of kidney disease. The method of elastic-scattering spectroscopy (ESS) measures backscattered light over the spectral range 320-900 nm and is highly sensitive to micromorphological changes in tissues. Using two discrete mouse models of CKD, we observed spectral trends of increased scattering intensity in the near-UV to short-visible region (350-450 nm), relative to longer wavelengths, for fibrotic kidneys compared to normal kidney, with a quasi-linear correlation between the ESS changes and the histopathology-determined degree of IFTA. These results suggest the potential of ESS as an objective, quantitative and faster assessment of IFTA for the management of CKD patients and in the allocation of organs for kidney transplantation.T32 HL007224 - NHLBI NIH HHS; R01 CA175382 - NCI NIH HHS; T32 GM086308 - NIGMS NIH HHS; R01 HL132325 - NHLBI NIH HHS; UL1 TR001430 - NCATS NIH HHSAccepted manuscriptPublished versio

    Temporal Variations of Skin Pigmentation in C57Bl/6 Mice Affect Optical Bioluminescence Quantitation

    Get PDF
    ABSTRACT PURPOSE: Depilation-induced skin pigmentation in C57Bl/6 mice is a known occurrence, and presents a unique problem for quantitative optical imaging of small animals, especially for bioluminescence. The work reported here quantitatively investigated the optical attenuation of bioluminescent light due to melanin pigmentation in the skin of transgenic C57B1/6 mice, modified such that luciferase expression is under the transcription control of a physiologically and pharmacologically inducible gene. PROCEDURE: Both in vivo and ex vivo experiments were performed to track bioluminescence signal attenuation through different stages of the mouse hair growth cycle. Simultaneous reflectance measurements were collected in vivo to estimate melanin levels. RESULTS: Biological variability of skin pigmentation was found to dramatically affect collected bioluminescent signal emerging through the skin of the mice. When compared to signal through skin with no pigmentation, the signal through highly-pigmented skin was attenuated an average of 90%. Correlation of reflectance signals to bioluminescence signal loss forms the basis of the proposed correction method. We observed, however, that variability in tissue composition, which results in inconsistent reflectance spectra, limits the accuracy of the correction method but can be improved by incorporating more complex analysis. CONCLUSION: Skin pigmentation is a significant variable in bioluminescent imaging, and should be considered in experimental design and implementation for longitudinal studies, and especially when sensitivity to small signal changes, or differences among animals, is required
    corecore