3,367 research outputs found
The stable marriage problem with master preference lists
We study variants of the classical stable marriage problem in which the preferences of the men or the women, or both, are derived from a master preference list. This models real-world matching problems in which participants are ranked according to some objective criteria. The master list(s) may be strictly ordered, or may include ties, and the lists of individuals may involve ties and may include all, or just some, of the members of the opposite sex. In fact, ties are almost inevitable in the master list if the ranking is done on the basis of a scoring scheme with a relatively small range of distinct values. We show that many of the interesting variants of stable marriage that are NP-hard remain so under very severe restrictions involving the presence of master lists, but a number of special cases can be solved in polynomial time. Under this master list model, versions of the stable marriage problem that are already solvable in polynomial time typically yield to faster and/or simpler algorithms, giving rise to simple new structural characterisations of the solutions in these cases
An algorithm for a super-stable roommates problem
In this paper, we describe an efficient algorithm that decides if a stable matching exists for a generalized stable roommates problem, where, instead of linear preferences, agents have partial preference orders on potential partners. Furthermore, we may forbid certain partnerships, that is, we are looking for a matching such that none of the matched pairs is forbidden, and yet, no blocking pair (forbidden or not) exists.
To solve the above problem, we generalize the first algorithm for the ordinary stable roommates problem
Hard variants of stable marriage
The Stable Marriage Problem and its many variants have been widely studied in the literature (Gusfield and Irving, The Stable Marriage Problem: Structure and Algorithms, MIT Press, Cambridge, MA, 1989; Roth and Sotomayor, Two-sided matching: a study in game-theoretic modeling and analysis, Econometric Society Monographs, vol. 18, Cambridge University Press, Cambridge, 1990; Knuth, Stable Marriage and its Relation to Other Combinatorial Problems, CRM Proceedings and Lecture Notes, vol. 10, American Mathematical Society, Providence, RI, 1997), partly because of the inherent appeal of the problem, partly because of the elegance of the associated structures and algorithms, and partly because of important practical applications, such as the National Resident Matching Program (Roth, J. Political Economy 92(6) (1984) 991) and similar large-scale matching schemes. Here, we present the first comprehensive study of variants of the problem in which the preference lists of the participants are not necessarily complete and not necessarily totally ordered. We show that, under surprisingly restrictive assumptions, a number of these variants are hard, and hard to approximate. The key observation is that, in contrast to the case where preference lists are complete or strictly ordered (or both), a given problem instance may admit stable matchings of different sizes. In this setting, examples of problems that are hard are: finding a stable matching of maximum or minimum size, determining whether a given pair is stable––even if the indifference takes the form of ties on one side only, the ties are at the tails of lists, there is at most one tie per list, and each tie is of length 2; and finding, or approximating, both an `egalitarian' and a `minimum regret' stable matching. However, we give a 2-approximation algorithm for the problems of finding a stable matching of maximum or minimum size. We also discuss the significant implications of our results for practical matching schemes
The stable roommates problem with ties
We study the variant of the well-known stable roommates problem in which participants are permitted to express ties in their preference lists. In this setting, more than one definition of stability is possible. Here we consider two of these stability criteria, so-called super-stability and weak stability. We present a linear–time algorithm for finding a super-stable matching if one exists, given a stable roommates instance with ties. This contrasts with the known NP-hardness of the analogous problem under weak stability. We also extend our algorithm to cope with preference lists that are incomplete and/or partially ordered. On the other hand, for a given stable roommates instance with ties and incomplete lists, we show that the weakly stable matchings may be of different sizes and the problem of finding a maximum cardinality weakly stable matching is NP-hard, though approximable within a factor of 2
Stable marriage with ties and bounded length preference lists
We consider variants of the classical stable marriage problem in which preference lists may contain ties, and may be of bounded length. Such restrictions arise naturally in practical applications, such as centralised matching schemes that assign graduating medical students to their first hospital posts. In such a setting, weak stability is the most common solution concept, and it is known that weakly stable matchings can have different sizes. This motivates the problem of finding a maximum cardinality weakly stable matching, which is known to be NP-hard in general. We show that this problem is solvable in polynomial time if each man's list is of length at most 2 (even for women's lists that are of unbounded length). However if each man's list is of length at most 3, we show that the problem becomes NP-hard (even if each women's list is of length at most 3) and not approximable within some δ>1 (even if each woman's list is of length at most 4)
Progress in InP solar cell research
Progress, in the past year, in InP solar cell research is reviewed. Small area cells with AMO, total area efficiencies of 18.8 percent were produced by OMCVD and Ion Implantation. Larger area cells (2 and 4 sq cm) were processed on a production basis. One thousand of the 2 sq cm cells will be used to supply power to a small piggyback lunar orbiter scheduled for launch in February 1990. Laboratory tests of ITO/InP cells, under 10 MeV proton irradiation, indicate radiation resistance comparable to InP n/p homojunction cells. Computer modeling studies indicate that, for identical geometries and dopant concentrations, InP solar cells are significantly more radiation resistant than GaAs under 1 MeV electron irradiation. Additional computer modeling calculations were used to produce rectangular and circular InP concentrator cell designs for both the low concentration SLATS and higher concentration Cassegrainian Concentrators
Size versus stability in the marriage problem
Given an instance I of the classical Stable Marriage problem with Incomplete preference lists (smi), a maximum cardinality matching can be larger than a stable matching. In many large-scale applications of smi, we seek to match as many agents as possible. This motivates the problem of finding a maximum cardinality matching in I that admits the smallest number of blocking pairs (so is “as stable as possible”). We show that this problem is NP-hard and not approximable within n1−ε, for any ε>0, unless P=NP, where n is the number of men in I. Further, even if all preference lists are of length at most 3, we show that the problem remains NP-hard and not approximable within δ, for some δ>1. By contrast, we give a polynomial-time algorithm for the case where the preference lists of one sex are of length at most 2. We also extend these results to the cases where (i) preference lists may include ties, and (ii) we seek to minimize the number of agents involved in a blocking pair
The Stable Roommates problem with short lists
We consider two variants of the classical Stable Roommates problem with Incomplete (but strictly ordered) preference lists (sri) that are degree constrained, i.e., preference lists are of bounded length. The first variant, egald-sri, involves finding an egalitarian stable matching in solvable instances of sri with preference lists of length at most d. We show that this problem is NP-hard even if d = 3. On the positive side we give a 2d+372d+37-approximation algorithm for d ∈{3,4,5} which improves on the known bound of 2 for the unbounded preference list case. In the second variant of sri, called d-srti, preference lists can include ties and are of length at most d. We show that the problem of deciding whether an instance of d-srti admits a stable matching is NP-complete even if d = 3. We also consider the “most stable” version of this problem and prove a strong inapproximability bound for the d = 3 case. However for d = 2 we show that the latter problem can be solved in polynomial time
Stable Marriage with Ties and Bounded Length Preference Lists
We consider variants of the classical stable marriage problem in which preference lists may contain ties, and may be of bounded length. Such restrictions arise naturally in practical applications, such as centralised matching schemes that assign graduating medical students to their first hospital posts. In such a setting, weak stability is the most common solution concept, and it is known that weakly stable matchings can have different sizes. This motivates the problem of finding a maximum cardinality weakly stable matching, which is known to be NP-hard in general. We show that this problem is solvable in polynomial time if each man's list is of length at most 2 (even for women's lists that are of unbounded length). However if each man's list is of length at most 3, we show that the problem becomes NP-hard and not approximable within some d > 1, even if each woman's list is of length at most 4
An Algorithm for a Super-Stable Roommates Problem
In this paper we describe an efficient algorithm that decides if a stable
matching exists for a generalized stable roommates problem, where, instead of
linear preferences, agents have partial preference orders on potential partners.
Furthermore, we may forbid certain partnerships, that is, we are looking for
a matching such that none of the matched pairs is forbidden, and yet, no
blocking pair (forbidden or not) exists.
To solve the above problem, we generalize the first algorithm for the ordi-
nary stable roommates problem
- …