2,779 research outputs found

    The Life of a Vortex Knot

    Full text link
    The idea that the knottedness (hydrodynamic Helicity) of a fluid flow is conserved has a long history in fluid mechanics. The quintessential example of a knotted flow is a knotted vortex filament, however, owing to experimental difficulties, it has not been possible until recently to directly generate knotted vortices in real fluids. Using 3D printed hydrofoils and high-speed laser scanning tomography, we generate vortex knots and links and measure their subsequent evolution. In both cases, we find that the vortices deform and stretch until a series of vortex reconnections occurs, eventually resulting several disjoint vortex rings. This article accompanies a fluid dynamics video entered into the Gallery of Fluid Motion at the 66th Annual Meeting of the APS Division of Fluid Dynamics.Comment: Videos are included; this submission is part of the DFD Gallery of Fluid Motio

    Strong coupling between single photons in semiconductor microcavities

    Full text link
    We discuss the observability of strong coupling between single photons in semiconductor microcavities coupled by a chi(2) nonlinearity. We present two schemes and analyze the feasibility of their practical implementation in three systems: photonic crystal defects, micropillars and microdisks, fabricated out of GaAs. We show that if a weak coherent state is used to enhance the chi(2) interaction, the strong coupling regime between two modes at different frequencies occupied by a single photon is within reach of current technology. The unstimulated strong coupling of a single photon and a photon pair is very challenging and will require an improvement in mirocavity quality factors of 2-4 orders of magnitude to be observable.Comment: 4 page

    Realisation of Hardy's Thought Experiment

    Full text link
    We present an experimental realisation of Hardy's thought experiment [Phys. Rev. Lett. {\bf 68}, 2981 (1992)], using photons. The experiment consists of a pair of Mach-Zehnder interferometers that interact through photon bunching at a beam splitter. A striking contradiction is created between the predictions of quantum mechanics and local hidden variable based theories. The contradiction relies on non-maximally entangled position states of two particles.Comment: 5 page

    Atomic and Molecular Opacities for Brown Dwarf and Giant Planet Atmospheres

    Get PDF
    We present a comprehensive description of the theory and practice of opacity calculations from the infrared to the ultraviolet needed to generate models of the atmospheres of brown dwarfs and extrasolar giant planets. Methods for using existing line lists and spectroscopic databases in disparate formats are presented and plots of the resulting absorptive opacities versus wavelength for the most important molecules and atoms at representative temperature/pressure points are provided. Electronic, ro-vibrational, bound-free, bound-bound, free-free, and collision-induced transitions and monochromatic opacities are derived, discussed, and analyzed. The species addressed include the alkali metals, iron, heavy metal oxides, metal hydrides, H2H_2, H2OH_2O, CH4CH_4, COCO, NH3NH_3, H2SH_2S, PH3PH_3, and representative grains. [Abridged]Comment: 28 pages of text, plus 22 figures, accepted to the Astrophysical Journal Supplement Series, replaced with more compact emulateapj versio

    Effects of flow alteration on Apple-ring Acacia (Faidherbia albida) stands, Middle Zambezi floodplains, Zimbabwe

    Get PDF
    The impounding of the Zambezi River by Kariba dam has regulated the river discharge of the Middle Zambezi river. This has been implicated in the failure of regeneration of Faidherbia albida in the downstream flood plain. This study aimed (1) to assess the effect of the altered flow regime of the river on the establishment and growth of F. albida on the Middle Zambezi floodplain and islands and (2) to test the potential of dendrochronology in detecting the age and long-term growth rates of F. albida in response to flow regime. Results indicated an uneven age distribution of F. albida stands on relatively ‘new islands’, dominated by young trees, while the floodplain and the ‘old island’ exhibited an even-aged stand but with a lack of regeneration, and a dying-off of older trees. The lack of F. albida establishment on the floodplain was linked to the decreased occurrence of flooding events, associated with a decrease in alluvial deposits, soil moisture and groundwater recharge. These effects may be enhanced by impact from browsers on regeneration of trees. Tree-ring analyses revealed the presence of distinct annual growth rings in F. albida and the applicability of dendrochronology for estimating F. albida population dynamics. The trees on the ‘new islands’ are younger and grow faster than those on the floodplain. Lack of competition and possible favourable moisture conditions suggest beneficial conditions for establishment and growth of the trees on the islands

    Helicity conservation by flow across scales in reconnecting vortex links and knots

    Get PDF
    The conjecture that helicity (or knottedness) is a fundamental conserved quantity has a rich history in fluid mechanics, but the nature of this conservation in the presence of dissipation has proven difficult to resolve. Making use of recent advances, we create vortex knots and links in viscous fluids and simulated superfluids and track their geometry through topology-changing reconnections. We find that the reassociation of vortex lines through a reconnection enables the transfer of helicity from links and knots to helical coils. This process is remarkably efficient, owing to the antiparallel orientation spontaneously adopted by the reconnecting vortices. Using a new method for quantifying the spatial helicity spectrum, we find that the reconnection process can be viewed as transferring helicity between scales, rather than dissipating it. We also infer the presence of geometric deformations that convert helical coils into even smaller scale twist, where it may ultimately be dissipated. Our results suggest that helicity conservation plays an important role in fluids and related fields, even in the presence of dissipation

    The influence of the cosmological expansion on local systems

    Get PDF
    Following renewed interest, the problem of whether the cosmological expansion affects the dynamics of local systems is reconsidered. The cosmological correction to the equations of motion in the locally inertial Fermi normal frame (the relevant frame for astronomical observations) is computed. The evolution equations for the cosmological perturbation of the two--body problem are solved in this frame. The effect on the orbit is insignificant as are the effects on the galactic and galactic--cluster scales.Comment: To appear in the Astrophysical Journal, Late
    • …
    corecore