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ABSTRACT

The impounding of the Zambezi River by Kariba dam has regulated the river discharge of the Middle Zambezi river. This has
been implicated in the failure of regeneration of Faidherbia albida in the downstream flood plain. This study aimed (1) to assess
the effect of the altered flow regime of the river on the establishment and growth of F. albida on the Middle Zambezi floodplain
and islands and (2) to test the potential of dendrochronology in detecting the age and long-term growth rates of F. albida in
response to flow regime.

Results indicated an uneven age distribution of F. albida stands on relatively ‘new islands’, dominated by young trees, while
the floodplain and the ‘old island’ exhibited an even-aged stand but with a lack of regeneration, and a dying-off of older trees.
The lack of F. albida establishment on the floodplain was linked to the decreased occurrence of flooding events, associated with
a decrease in alluvial deposits, soil moisture and groundwater recharge. These effects may be enhanced by impact from browsers
on regeneration of trees. Tree-ring analyses revealed the presence of distinct annual growth rings in F. albida and the
applicability of dendrochronology for estimating F. albida population dynamics. The trees on the ‘new islands’ are younger and
grow faster than those on the floodplain. Lack of competition and possible favourable moisture conditions suggest beneficial
conditions for establishment and growth of the trees on the islands. Copyright © 2014 John Wiley & Sons, Ltd.
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INTRODUCTION

The construction of dams to meet human needs, such as
water, energy and food, modify the natural flow of rivers,
decrease peak flows, floodplain inundation and down-
stream sediment supply (Attwell, 1970; Shafroth et al.,
2002; Elderd, 2003). Changing the hydrological character
of rivers impacts biogeochemical, physical and biotic
interactions (Poff et al., 1997; Naiman et al., 1999; Thoms,
2006) and the livelihoods of rural communities dependent
on ecosystem services (Ncube et al., 2012).

Flooding regimes are central in determining the spatial
and temporal dynamics of floodplain ecology. Changes in
river flows, water quality and sediment transport can alter
habitat and the germination and growth of riparian
vegetation (Elderd, 2003; Mallik and Richardson, 2009;
Xiaoyan et al., 2010). Since the construction of the Kariba

dam in 1958, the ecological function of the Middle
Zambezi floodplains has been reported to be deteriorating
(Attwell, 1970). One notable observation attributed to the
effects of the dam is the failure of Faidherbia albida trees
to regenerate on the floodplain in the last few decades
(Dunham, 1989a), although young trees are observed on
the islands within the river channel.
F. albida, a riparian tree species native to the Middle

Zambezi floodplains, has a so-called reverse phenology,
with leaves in the dry season that are shed in the wet season
(Barnes and Fagg, 2003). Dry season growth relies on
uptake of water from deep soil layers, making the tree a
facultative phreatophyte (Roupsard et al., 1999). F. albida
can develop a deep tap root of up to 30m to exploit
groundwater (Barnes and Fagg, 2003). Establishment of
F. albida seedlings requires ample soil moisture during
early growth to enable rapid tap-root development into
groundwater before surface layers dry out. The specific
growth pattern of the species makes it an important source
of forage for browsers, when other foliage during the dry
season is limited (Attwell, 1970; Du Toit, 1984).
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To better understand forest ecosystems, dendrochronol-
ogy provides a method to estimate tree age, long-term
radial growth dynamics and age–diameter relationships
(Fichtler et al., 2003; Rozendaal and Zuidema, 2011).
Variation in ring width of riparian trees can help
understand the impact of stream-flow regulation on tree
growth and the environmental factors driving radial growth
(Wils et al., 2010). Dendrochronology requires the
presence of distinct annual rings, which are mostly
indicated by specific wood-anatomical structures indicating
ring boundaries (Worbes and Fichtler, 2011). The distinctness
of growth rings largely depends on the seasonality of growth-
determining factors and especially the length of unfavourable
growth conditions leading to cambium dormancy (Worbes,
2002). Periodic growth stops, especially when related to leaf
deciduousness, are likely to result in distinct growth
boundaries. The ease at which rings can be detected varies
among species and their specific wood anatomy and is often
complicated by phenomena such as missing, wedging or
double rings (Gourlay, 1995; Eshete and Ståhl, 1999; Wils
et al., 2009, 2011).
The work presented here aims to understand the effect of

the altered flow regime downstream of the Kariba dam
(1958), on the F. albida stand structure on the Middle
Zambezi floodplain and islands. The actual stand structure
was assessed by recording tree height, diameter and density
in plots on the islands and the floodplain along a transect
perpendicular to the river. To assess the relationships
between stand structure and browsers, we monitored the
browser density along the same transect. Moreover, we
tested the potential of dendrochronology for detecting age
and growth dynamics of F. albida by investigating stem
discs from four trees, two growing in the floodplain and
two on the islands.

Study area and site conditions
The study was completed on the Mana floodplains and
islands within the Zambezi river channel, about 150 km
downstream of Kariba Dam (Figure F11). The floodplains are
within Mana Pools National Park, a prime wildlife
attraction in Zimbabwe, with high densities of browsers
comprising mainly elephants (Loxodonta africana), impala
(Aepyceros melampus) and buffalo (Syncerus caffer)
(Zimbabwe Parks and Wildlife Management Authority,
2009). Within this area, the Zambezi River is characterized
by a wide, shallow channel, with many mid-channel islands
of varying age. These islands are both vegetated and non-
vegetated, indicating their relative age. The total length of
the floodplain is about 91 km, and the average width is
approximately 3 km. Most islands are narrow and long, but
some, such as the Chikwenya Island, with a maximum
width of about 2 km, are wider.
The younger, and closest to the river, alluvial deposits of

the floodplains are covered by F. albida woodland. Slightly
higher parts of the floodplain support more diverse Kigelia
africana, Trichelia emetica and Lonchocarpus capassa
woodlands. Seasonally flooded channels are habitat for
perennial species such as Vetiveria nigritana and Setaria
sphacelata (Du Toit, 1984). The main vegetation types
inland, beyond the floodplain, are Colophospermum
mopane woodlands, mixed-species layered dry forests
(‘jesse bush’) and various fairly open mixed-species
deciduous woodlands.
Temperatures in this area range between 18 and 40 °C,

averaging between 21 and 32 °C, with cool and dry winters
from May to July, rising to 40 °C between August and
October (Figure F22), that precede the October to April rainy
season. Rain usually comes as short, intense thunder-
showers, which are highly variable among years, with

Figure 1. Location of Mana Pools National Park and Middle Zambezi Floodplains.
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annual means of about 750mm at Mana Pools National
Park, Nyamepi Camp (Zimbabwe Parks and Wildlife
Management Authority, 2009).

Before the dam was filled, unregulated downstream
flows steadily increased through the wet season, with two
distinct high-flow periods annually. The lesser flood
occurred around February and the higher flood, partly
inundating the floodplain, occurred around April (Ncube
et al., 2012). Since the filling of the dam in 1959, flows
have been regulated for power generation purposes,
through two power stations: Kariba North (established
1976/1977) and Kariba South (established 1960), respec-
tively. Flooding events now depend upon the opening of
the floodgates by the Zambezi River Authority, according
to hydropower generation operating rules. The influence of
these stations on downstream flows has been monitored
using flow gauges (Zimbabwe Parks and Wildlife Man-
agement Authority, 2009). The consequence to the river in
the Mana Pools area can be observed most clearly from
around 1980 onwards where a more constant flow regime
of around 1200m3 s�1 with occasional peaks representing
spillage through the floodgates is evident. This trend is
observed after Kariba North was established and in a
period of low flow in the region (Ncube et al., 2012). This
new regime is mismatched to the natural flooding regime
(Attwell, 1970; Ncube et al., 2012).

METHODS

Stand structure sampling and data collection

Transects of equal width were established on Mana
floodplains and islands within the channel perpendicular

to the river (Figure F33). Transects on the floodplain were
1·3 km long from the river bank, except transect 4 of
1·6 km, because of the absence of F. albida trees close to
the riverbank, and transects 7 and 8 of 0·2 and 0·7 km,
respectively, because the floodplain width is narrower here
than at other sites. The distance between transects was
determined by the distance between islands with F. albida
trees.
Three 30m× 30m vegetation plots were established on

each transect. One plot was set on the island and two on the
floodplain. Floodplain plots were separated equidistantly
from each other along transects, except for transects 7 and
8. In each plot, tree species were identified, and the
diameter of F. albida at breast height (dbh), 130 cm above
the ground, was measured with a calliper. The height of the
F. albida trees was measured using an electronic
clinometer (Haglof Electronic Clinometer). Browsers
sighted along the transect and surrounding visible areas
were counted between 0700 h and 1700 h from 5 to 10
December 2011, according to the road strip count
methodology for wildlife census (Dunham and Tsindi,
1984; Dunham, 1994). Tree diameters and heights from
both island and floodplain sites were pooled into 10-cm-
wide and 5-m-high frequency distribution classes, respec-
tively. For all tree species, the frequency of occurrence was
calculated as follows:

Species Frequency ¼ No:of plots in which a species occurs
Total number of plots

� 100

The species distribution of the floodplain plots closest to
the river was compared with those found in the island plots.

Figure 2. Climatic diagram for Mana Pools National Park.
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The relative frequency of browsers sighted was calcu-
lated as follows:

Relative Frequency ¼ Frequency of a species
Total frequency of all species

� 100

Dendrochronology sampling and data collection

To limit the impact of the study within a protected national
park, only eight-stem discs of F. albida were collected from
four fallen trees: two from the island and two from the
floodplain. Two-stem discs with a thickness of about 5–7 cm
k; were collected from each tree. One disc was cut at the base
of the tree below 50 cm height and another at about 2m height
from the base. The discs were air dried for 6weeks. Two
slices, approximately representing half of the disc, were
extracted to reduce weight during transportation to the
laboratory.
Disc slices were mechanically sanded, using sandpaper

of increasing grit size up to a grade of 800, until a smooth
finish was achieved. The wood-anatomical structure was
screened macroscopically for concentric growth bound-
aries, which were subsequently marked on the discs. Ring
widths were measured along three radii per stem segment
to the nearest 0·01mm using a LINTAB measuring table
associated with the program TSAP (both RinnTech,
Heidelberg). Tree ring series were visually cross-dated
among radii of the same tree to produce ring-width mean
ring-width series for every individual tree, and age was
determined. Themean curves of the two floodplain and island
trees were mutually cross-dated. Ring-width series were
statistically described to assess basic information on growth

level and variation (TSAP-Win™, Rinntech). These data were
then directly related to available river discharge records for
the Zambezi (Main stem flow gauge: 1907–1958 Victoria
Falls, 1958–2008 Kariba; Kafue flow gauge: 1907–2008
Kafue (Zimbabwe Parks and Wildlife Management
Authority, 2009)). Plotting these results together, correlations
and trends could be investigated. Additionally, for the four
dendro-dated trees, age–diameter relationships were estimat-
ed using cumulative growth curves.

RESULTS

F. albida stand structures

The frequency distribution of F. albida dbh on the
floodplain (Figure F44a) indicates an absence of young trees
as no trees were sampled with a diameter below 50 cm. The
majority of the floodplain trees dbh were concentrated
within 70 to 120 cm, with a declining frequency of trees
with dbh above 120 cm. Mean dbh was 100 (±30 SD) cm.
The average density of trees per sampled plots was
3 (±1 SD), equivalent to 33 stems ha�1.
Diameter and height distribution results for islands are

presented in two parts. Results for the ‘old island’, Chikwenya
Island, are shown separate from the six relatively ‘new
islands’ (Figure 3). Chikwenya Island showed more similar-
ities inF. albida stand structure to the floodplain sites than the
new islands. Chikwenya Island had no F. albida trees with a
diameter of <20 cm (Figure 4b). Trees were concentrated
within the 20–60 cm range with the majority of trees within
the 51–60 cm class. Tree density was eight stems per plot
(89 stemsha�1), which was higher than on the floodplain.

Figure 3. An illustration of the layout of the sampled transects on the Middle Zambezi floodplains and islands within the river channel. Dots represent
the position of the sampled plots, and red lines represent the belt-transect.
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Conversely, diameter distribution of the new island trees
comprised many small and a few big trees (Figure 4c),
reflecting a developing young tree stand and successful
post dam regeneration. The majority of the trees were
concentrated in the range of 10–60 cm, with the highest
frequency occurring in the class 10–20 cm. The tree density

on the new islands was higher than floodplain tree density,
that is, 11 stems per plot (122 stems ha�1).

Height distribution

The majority of trees on the floodplain were above 10m
high, with 40% occurring within the distribution class

Figure 4. Dbh size distribution of F. albida trees on (a) Mana floodplains, (b) Chikwenya Island (old island) and (c) Middle Zambezi islands (new
islands) (December 2011). n= 38, 15, 79.
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16–20 m (FigureF5 5a). The highest height recorded
was 24m, with no F. albida trees <6m. Mean tree
height on the floodplain was 17 (+4 SD)m. Chikwenya
Island had no F. albida trees <6m high (Figure 5b).
The majority of trees were within the range of 16–20m,
and the highest recorded was 22m. Height distribution
on ‘new islands’ trees reflected a young stand, with
the majority of trees (65%) within 0–5m (Figure 5c).
The remaining trees were >5m high, with the tallest
tree recorded of 14m. The height distribution suggests
an uneven-aged young stand, supporting the dbh
distribution.

Species composition

F. albida was the most frequent species (Figure F66) recorded.
On the floodplain, T. emetica and Croton megalobotryswere
sub-dominants, and Friesodielsia pavatum, K. africana
and Cleistochlamys kirkii are also present. On the islands,
T. emetica and Cassia spp. were sub-dominants, with
Crombretum mossambicense and K. africana also present.

Relationship between browsers and stand structure

The most frequent browsers sighted on the floodplain were
buffalo and impala, which occurred with similar frequencies,

Figure 5. Frequency distribution of the height classes of the F. albida trees on (a) Mana floodplains, (b) Chikwenya Island (old island) and (c) Middle
Zambezi islands (new islands) in December 2011. n= 38, 15, 79.
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of 40% and 38%, respectively (FigureF7 7a). Elephants were the
third most frequent browser sighted. On Chikwenya Island,
Impala had the highest recorded frequency (70%) followed
by waterbuck (Kobus ellipsiprymnus) with 20% (Figure 7b).
On the new islands, buffalo had the highest frequency (30%),
but hippopotamus (Hippopotamus amphibious) (50%) and
elephants (20%) were also common (Figure 7c). Almost
every sampled tree at all sites showed signs of elephant
damage. The majority of F. albida trees on the floodplain had
debarking scars, whereas on the islands, the damage was
mostly broken branches with a few debarking incidences.

Detection of growth rings and compilation of ring-width
series

The sapwood of F. albida is yellowish beige, and older
trees contain golden to dark brown heartwood. On the

polished wood surface, alternating bands of dark fibre and
light parenchyma cells are obvious (Figure F88). The water
conducting vessels are embedded in the parenchyma bands,
and the small rays are almost invisible. Growth rings are
marked by a change in the spacing of tangential
parenchyma bands in combination with decreasing thick-
ness of the fibre bands in combination with a thin marginal
parenchyma band, which is formed at the end of a growing
season. This type of marker is described in Worbes and
Fichtler (2011) as a combination of type B (marginal
parenchyma bands) and C (recurring parenchyma and fibre
bands of different width). In some cases, changes in the
pattern of parenchyma bands were combined with
variations in vessel distribution, especially in rings formed
during the juvenile phases of the tree, that is, the first 20
rings around the pith. At the beginning of a growth ring,

Figure 6. Frequency of occurrence of trees and shrubs on the sampled Mana floodplains plots (a) and Middle Zambezi islands plots (b) in December
2011. n= 8, 8.
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Figure 7. Relative frequency of browsers sighted on both the floodplain (a) and islands (b) during the collection of field measurements from 5 to 10
December 2011. n= 98, 34.

Figure 8. F. albida macroscopical; black arrows indicate annual ring boundaries, and white arrows indicate different cell types. F = Fibre,
P = Parenchyma, V =Vessels. Black scale bar is 1mm.
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vessel density was highest with a decreasing trend towards
the ring boundary.

The distinctness and width of rings can vary consider-
ably within a growth layer around the circumference. Both
young and old trees showed density variations, often
referred to as double or false rings as well as partly missing
or wedging rings. Ring wedging tended to be more
frequent in older trees with narrow rings towards the outer
parts of stem discs.

Ring-widths series of the three radii measured per tree
could be crossdated. However, crossdating of mean curves
of the two floodplain trees was difficult because of the
generally low growth level of both trees resulting in a less
pronounced annual variation in the ring-width pattern. The
two island trees yielded short time series, which could not
be crossdated.

Age determination and radial growth patterns of selected
floodplain and island trees

From the ring-width series, it can be concluded that the two
large floodplain trees with both having a dbh of 52 cm are
about 103 and 84 years old, whereas the two island trees

were very young, 16 and 10 years old, respectively
(Table T1I). As stem discs are taken at 50 cm, ring counts
had to be adjusted by 2 years, on the basis of the
assumption that the fast initial radial growth also points
to fast height growth.
The four investigated floodplain and island trees also

strongly differ in average radial growth rate, with the
younger island trees showing much fast growth. Radial
growth rates of the island trees strongly exceed those of the
juvenile growth of the floodplain trees (Table I, Figure F99).
The low average annual growth rates of the older
floodplain trees, that is, between 2·58 and 3·14mm, are
mainly attributed to an ontogenetic trend in radial growth.
During the establishment and juvenile phase, both
floodplain trees were growing fast, but over the last
decade, ring width was noticeably lower, especially in
floodplain tree 1 (Table I, Figure 9). However, it also
becomes obvious that ontogenetic growth trends can differ
between trees; in floodplain tree 2, the growth level
abruptly declines after approximately 20 years of fast
juvenile growth, whereas tree 1 shows a drop in growth
level after about 50 years (Figure 9).

Table I. Sampling and chronology characteristics of F. albida on Middle Zambezi floodplains and islands.

Study site Sample no. Tree Tree dbh (cm) Agea (years) Mean ring width (mm) Standard deviation
Mean ring width
first 10 years (mm)

Floodplain 2 1 52 103 2·58 1·91 5·07
2 52 84 3·14 2·30 5·83

Islands 2 1 29 16 9·69 4·76 9·68
2 13 10 6·48 6·88 6·48

a Tree age is estimated as number of counted rings plus 2 years to correct for sampling height of 50 cm.

Figure 9. Tree age compared with cumulative stem radial growth of F. albida growing on Mana floodplains (floodplains 1 and 2) and Middle Zambezi
islands (islands 1 and 2). Each line represents an individual tree.
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F. albida radial growth dynamics

Mean growth rates (Table I) estimated for floodplain trees,
trees 1 and 2, were 2·58 and 3·14mmyear�1, respectively.
Mean growth rates for island trees, trees 1 and 2, were 9·69
and 6·48mmyear�1, respectively. For floodplain trees 1
and 2, mean growth rates for the first 10 years were 5·07
and 5·83mmyear�1, respectively. Island trees 1 and 2 had
9·68 and 6·48mmyear�1, respectively. Growth trajectories
suggest that a 25-cm radius (50-cm diameter) of floodplain
trees corresponds to trees of about 100 years old (96 years
for tree 1 and 79 years for tree 2).

Relationship between radial growth and river discharge

Owing to the low sample size, no statistical analyses could
be used to assess the relationship between environmental
factors, including river discharge, and annual or decadal
variation in radial tree growth. However, via visual
comparison between patterns in ring-width series and river
discharge, an indication can be observed between sudden
changes in both records. During the pre-dam period
between 1930 and 1950, a positive relationship between
annual variation of ring width, especially of floodplain tree
2, and river discharge can be observed (FigureF10 10).
However, this relationship declined a couple years before
the dam was constructed in 1958. A lack of abrupt and
synchronous changes in the two ring-width series does not
implicate an influence of the changed flow regime after
1958, although there was a slight tendency of a gradual
decrease in ring width in tree 1 (Figure 10).

DISCUSSION

F. albida stand structure

The absence of trees with small diameters and the dying-off
of older trees indicated by the scattered occurrence of trees
with large diameters on the floodplain indicate a forest
stand lacking regeneration. Chikwenya Island has an F.
albida stand structure similar to the floodplain with
absence of trees in the lower dbh classes (0–30 cm) and
in the lower height classes (0–10m). However, unlike the
floodplain, characterized by trees with large diameters, the
highest dbh on Chikwenya was 60 cm (Figures 4 and 5). In
contrast, the clustering of new islands’ tree diameters
within the lower class ranges signifies a young and
regenerating forest (Bragg et al., 2012). Island stands
density was highest and with the lowest stand density
observed on the floodplain. The floodplain density
(33 stems ha�1) was comparable to other studies (Roupsard
et al., 1999; Ndava, 2005; Ncube et al., 2012), whereas the
densities on the islands (Chikwenya and the new islands,
89 and 122 stems ha�1, respectively) were significantly
higher. This may be attributable to lower browsing
pressure. F. albida tree can grow to heights of 30m
(Barnes and Fagg, 2003), but no sampled trees were taller
than 25m on the floodplain, implying this to be the
maximum attainable height on this site, with some trees
reaching senescence (Figure 5).
In this study, a floodplain tree of about 52 cm dbh was

found to be around 100 years, indicating an annual growth
rate comparable to those found in natural stands of Senegal

Figure 10. Tree-ring mean curves of the four sampled trees in comparison to Middle Zambezi river discharge.
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by Mariaux in 1966 (Wood, 1989) and in Burkina Faso by
Depommier and Detienne in 1996 (Barnes and Fagg, 2003)
(Table I). An island tree with a dbh of about 29 cm was
found to be 16 years old, which resembles an age–diameter
relationship similar to those from agro forestry sites
(Wood, 1989; Gourlay, 1995; Barnes and Fagg, 2003).
Overall, sampled floodplain trees were older than the island
trees, and island trees grew faster than the two investigated
floodplain trees that grew in their juvenile phase (Figure 9).
Growth rates of the island trees are comparable to managed
sites, suggesting optimal conditions for establishment
and growth. The age–diameter relationship found for
islands tree is also comparable with the growth rate of
the tree observed by several researchers and concurring
with a consensus that the tree reaches senescence at about
80–100 years (Baumer, 1983; Sturmheit, 1990; Sterck
et al., 1991; Barnes and Fagg, 2003) and at diameters of
about 200 cm (Fagg and Stewart, 1994). However, Barnes
and Fagg (2003) considered that the tree can live to over
100 years, concurring with reports of F. albida trees in
Zambia over 150 years (Wood, 1989) and of a tree that was
noted in Libya by Oundey in 1822, which was still alive in
the late 1960s (Wickens, 1969).

Relationship between browsers and stand structure

The floodplain site and Chikwenya Island, accessed easily
by browsers, had an older age-stand compared with the
more difficult to access islands, which also had good
regeneration (Figures 7 and 9). In the dry season, browsers
congregate on the floodplain because of its proximity to
water and availability of forage (Dunham, 1994).
Chikwenya Island is a permanent habitat of a browser
population, whereas only a few animals cross to the rest of
the islands, mostly during the dry season. Browsers mostly
affect F. albida seedlings if cropped before they reach
permanent groundwater, after which they can coppice from
repeated cropping. Elephants have been documented to
have high impact on F. albida. In Ruaha National Park,
Tanzania, 40% mortality of the tree and lack of
regeneration were attributed to high elephant population
(Barnes and Fagg, 2003). However, in this study, despite
almost every sampled tree showing signs of elephant
damages, regeneration was taking place on the ‘new
islands’, suggesting elephants might not be solely respon-
sible for the lack of regeneration. In Chobe National Park,
Botswana, the survival of F. albida seedlings in designated
plots was negatively related to impala densities and
unrelated to densities of other browsers such as elephants
and kudu (Moe et al., 2009). In this study, high impala
densities were recorded on both the floodplain and
Chikwenya Island. On Mana floodplain, however, Dunham
(1994) reported a failure of F. albida regeneration in
parkland protected from browsers. Although Barnes and
Fagg (2003) suggest that F. albida cannot regenerate under

its own canopy, it is also known that F. albida is dependent
upon browsers for seed dispersal because of the need for
digestion of the seed coat (Lamprey, 1967; Barnes and
Fagg, 2003; Or and Ward, 2003). This implies that
regeneration of F. albida requires low to moderate
densities of browsers, which may not be the case in highly
protected nature reserves dependent on tourist revenue.
Some of the vegetation species on the Mana floodplain

such as K. africana, T. emetica and L. capassa have been
reported to follow F. albida in succession (Barnes and
Fagg, 2003) (Figure 6). Assuming that is the case, F. albida
may not then regenerate well on floodplains with
established woodland.

Links between flow regime and stand structure
establishment and growth

Regeneration of F. albida is episodic, following the
creation of bare habitats of alluvial deposits after large
floods. Trees can establish on new alluvial deposits where
there is reduced competition (Barnes and Fagg, 2003). The
construction of Kariba dam reduced the downstream
floodplain inundation and subsequent sediment deposition
(Attwell, 1970). Because sediment deposition is a result of
large floods and inundation events, the absence of such
floods may deprive the tree of a seedbed (Figure 10).
Successful establishment of F. albida requires enough

moisture to grow tap roots fast enough to reach
groundwater before surface layers dry out (Barnes and
Fagg, 2003). The timing of the pre-dam flooding event in
April, at the beginning of the rainy season, is likely to have
provided the moisture required by the seedlings’ taproot to
reach groundwater. Besides recharging the soil moisture
and alluvial aquifer, large flooding events also reduce
competition by scouring off flood-intolerant species (Poff
et al., 1997). Following dam construction, the absence of

Figure 11. Showing F. albida tree fallen into the river channel after the
soil has been eroded – bank erosion (December 2011).
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flooding would favour other vegetation species such as C.
megalobotrys (Dunham, 1989b) and Indigofera shrubs
(Ncube et al., 2012), and increased bank erosion may have
led to the loss of young F. albida (Dunham, 1989a; Ncube
et al., 2012) (FigureF11 11).
The development gradient of the tree vegetation on

Mana floodplain increases with distance from the river,
with young trees found close to the river bank. Bank
erosion increases the gradient between the river and
floodplain, causing steep banks in areas with significant
topographical change between floodplain and river channel
(FigureF12 12a). On the islands, a gentle gradient between the
river and islands, and low topography, allows the
inundation of large parts of the island during flood events,
promoting soil moisture and early tree growth (Figure 12b).
Aerial photographs have shown that since the Kariba dam

construction, outflow has eroded, deposited and reconfigured
some of the old big islands into small new ones (Mubambe,
2011). These disturbances provide the tree with new habitat to
colonize. Chikwenya Island is older than the other islands and
was present before dam construction.

Outlook – potential of dendrochronology

F. albida exhibits distinct growth rings, which resemble
those observed by other researchers (Giffard, 1971;
Gourlay, 1995). Seeing the presence of distinct annual
changes in leaf phenology, it can be assumed that these
growth layers are annual (Roupsard et al., 1999; Rozendaal
and Zuidema, 2011). However, to understand dynamics
in annual ring formation and environmental factors
driving it, either pinning or microsampling should be
applied (e.g. Rossi et al., 2006; Tolera et al., 2013).
Variation in ontogenetic trends as well as problems of
growth-ring detection especially in slow growing older
trees are common phenomena in tropical tree species
(Worbes, 2002; Dunisch et al., 2003; Sass-Klaassen et al.,
2008). Establishment of reliable diameter–age relationships
for F. albida will therefore require a large and systematic

sampling campaign whereby trees of different diameters
are sampled in different habitats (Brienen et al., 2012).

CONCLUSIONS

The alteration of the Middle Zambezi flow regime shaped
F. albida stand structures on the middle Zambezi islands
and Mana floodplain by affecting the trees’ habitat and soil
moisture availability. The construction of Kariba dam
reduced the downstream floodplain inundation and subse-
quent sediment deposits, depriving the tree of suitable
seedbeds on the floodplain. The reduction of floodplain
inundation events may have reduced the early dry season
soil moisture recharging of the floodplain. Conversely, the
altered morphology of the river as a result of the dam
created new islands, providing an ideal habitat for the
establishment of F. albida populations. Additionally, the
absence of young F. albida trees on the floodplain can be
linked to the growth pattern of the tree as a pioneer species
where it is being succeeded by species reported to follow it
in succession such as T. emetica. Browsers feeding habits
potentially play a major role in structuring these stands. F.
albida forms distinct annual growth rings, and this study
has demonstrated that dendrochronology can be applied to
gain information on population dynamics and tree growth
in relation to environmental factors.
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