213 research outputs found
Ribosomal S6K1 in POMC and AgRP Neurons Regulates Glucose Homeostasis but Not Feeding Behavior in Mice.
SummaryHypothalamic ribosomal S6K1 has been suggested as a point of convergence for hormonal and nutrient signals in the regulation of feeding behavior, bodyweight, and glucose metabolism. However, the long-term effects of manipulating hypothalamic S6K1 signaling on energy homeostasis and the cellular mechanisms underlying these roles are unclear. We therefore inactivated S6K1 in pro-opiomelanocortin (POMC) and agouti-related protein (AgRP) neurons, key regulators of energy homeostasis, but in contrast to the current view, we found no evidence that S6K1 regulates food intake and bodyweight. In contrast, S6K1 signaling in POMC neurons regulated hepatic glucose production and peripheral lipid metabolism and modulated neuronal excitability. S6K1 signaling in AgRP neurons regulated skeletal muscle insulin sensitivity and was required for glucose sensing by these neurons. Our findings suggest that S6K1 signaling is not a general integrator of energy homeostasis in the mediobasal hypothalamus but has distinct roles in the regulation of glucose homeostasis by POMC and AgRP neurons
Dynamic range of GSK3α not GSK3β is essential for bidirectional synaptic plasticity at hippocampal CA3-CA1 synapses.
Glycogen synthase kinase-3 (GSK3), particularly the isoform GSK3β, has been implicated in a wide range of physiological systems and neurological disorders including Alzheimer's Disease. However, the functional importance of GSK3α has been largely untested. The multifunctionality of GSK3 limits its potential as a drug target because of inevitable side effects. Due to its greater expression in the CNS, GSK3β rather than GSK3α has also been assumed to be of primary importance in synaptic plasticity. Here, we investigate bidirectional long-term synaptic plasticity in knockin mice with a point mutation in GSK3α or GSK3β that prevents their inhibitory regulation. We report that only the mutation in GSK3α affects long-term potentiation (LTP) and depression (LTD). This stresses the importance of investigating isoform specificity for GSK3 in all systems and suggests that GSK3α should be investigated as a drug target in cognitive disorders including Alzheimer's Disease
PPAR gamma-coactivator-1 alpha gene transfer reduces neuronal loss and amyloid-beta generation by reducing beta-secretase in an Alzheimer's disease model
Current therapies for Alzheimer’s disease (AD) are symptomatic and do not target the underlying Aβ pathology and other important hallmarks including neuronal loss. PPARγ-coactivator-1α (PGC-1α) is a cofactor for transcription factors including the peroxisome proliferator-activated receptor-γ (PPARγ), and it is involved in the regulation of metabolic genes, oxidative phosphorylation, and mitochondrial biogenesis. We previously reported that PGC-1α also regulates the transcription of β-APP cleaving enzyme (BACE1), the main enzyme involved in Aβ generation, and its expression is decreased in AD patients. We aimed to explore the potential therapeutic effect of PGC-1α by generating a lentiviral vector to express human PGC-1α and target it by stereotaxic delivery to hippocampus and cortex of APP23 transgenic mice at the preclinical stage of the disease. Four months after injection, APP23 mice treated with hPGC-1α showed improved spatial and recognition memory concomitant with a significant reduction in Aβ deposition, associated with a decrease in BACE1 expression. hPGC-1α overexpression attenuated the levels of proinflammatory cytokines and microglial activation. This effect was accompanied by a marked preservation of pyramidal neurons in the CA3 area and increased expression of neurotrophic factors. The neuroprotective effects were secondary to a reduction in Aβ pathology and neuroinflammation, because wild-type mice receiving the same treatment were unaffected. These results suggest that the selective induction of PGC-1α gene in specific areas of the brain is effective in targeting AD-related neurodegeneration and holds potential as therapeutic intervention for this disease
PPARγ-coactivator-1α gene transfer reduces neuronal loss and amyloid-β generation by reducing β-secretase in an Alzheimer’s disease model
Current therapies for Alzheimer’s disease (AD) are symptomatic and do not target the underlying Aβ pathology and other important hallmarks including neuronal loss. PPARγ-coactivator-1α (PGC-1α) is a cofactor for transcription factors including the peroxisome proliferator-activated receptor-γ (PPARγ), and it is involved in the regulation of metabolic genes, oxidative phosphorylation, and mitochondrial biogenesis. We previously reported that PGC-1α also regulates the transcription of β-APP cleaving enzyme (BACE1), the main enzyme involved in Aβ generation, and its expression is decreased in AD patients. We aimed to explore the potential therapeutic effect of PGC-1α by generating a lentiviral vector to express human PGC-1α and target it by stereotaxic delivery to hippocampus and cortex of APP23 transgenic mice at the preclinical stage of the disease. Four months after injection, APP23 mice treated with hPGC-1α showed improved spatial and recognition memory concomitant with a significant reduction in Aβ deposition, associated with a decrease in BACE1 expression. hPGC-1α overexpression attenuated the levels of proinflammatory cytokines and microglial activation. This effect was accompanied by a marked preservation of pyramidal neurons in the CA3 area and increased expression of neurotrophic factors. The neuroprotective effects were secondary to a reduction in Aβ pathology and neuroinflammation, because wild-type mice receiving the same treatment were unaffected. These results suggest that the selective induction of PGC-1α gene in specific areas of the brain is effective in targeting AD-related neurodegeneration and holds potential as therapeutic intervention for this disease
Ribosomal S6K1 in POMC and AgRP Neurons Regulates Glucose Homeostasis but Not Feeding Behavior in Mice.
SummaryHypothalamic ribosomal S6K1 has been suggested as a point of convergence for hormonal and nutrient signals in the regulation of feeding behavior, bodyweight, and glucose metabolism. However, the long-term effects of manipulating hypothalamic S6K1 signaling on energy homeostasis and the cellular mechanisms underlying these roles are unclear. We therefore inactivated S6K1 in pro-opiomelanocortin (POMC) and agouti-related protein (AgRP) neurons, key regulators of energy homeostasis, but in contrast to the current view, we found no evidence that S6K1 regulates food intake and bodyweight. In contrast, S6K1 signaling in POMC neurons regulated hepatic glucose production and peripheral lipid metabolism and modulated neuronal excitability. S6K1 signaling in AgRP neurons regulated skeletal muscle insulin sensitivity and was required for glucose sensing by these neurons. Our findings suggest that S6K1 signaling is not a general integrator of energy homeostasis in the mediobasal hypothalamus but has distinct roles in the regulation of glucose homeostasis by POMC and AgRP neurons
Sub-chronic ketamine administration increases dopamine synthesis capacity in the mouse midbrain: a preclinical in vivo PET study
PURPOSE: There is robust evidence that people with schizophrenia show elevated dopamine (DA) synthesis capacity in the striatum. This finding comes from positron emission tomography (PET) studies using radiolabelled l-3,4-dihydroxyphenylalanine (18F-DOPA). DA synthesis capacity also appears to be elevated in the midbrain of people with schizophrenia compared to healthy controls. We therefore aimed to optimise a method to quantify 18F-DOPA uptake in the midbrain of mice, and to utilise this method to quantify DA synthesis capacity in the midbrain of the sub-chronic ketamine model of schizophrenia-relevant hyperdopaminergia. PROCEDURES: Adult male C57Bl6 mice were treated daily with either ketamine (30 mg/kg, i.p.) or vehicle (saline) for 5 days. On day 7, animals were administered 18F-DOPA (i.p.) and scanned in an Inveon PET/CT scanner. Data from the saline-treated group were used to optimise an atlas-based template to position the midbrain region of interest and to determine the analysis parameters which resulted in the greatest intra-group consistency. These parameters were then used to compare midbrain DA synthesis capacity (KiMod) between ketamine- and saline-treated animals. RESULTS: Using an atlas-based template to position the 3.7 mm3 midbrain ROI with a T*-Tend window of 15-140 min to estimate KiMod resulted in the lowest intra-group variability and moderate test-retest agreement. Using these parameters, we found that KiMod was elevated in the midbrain of ketamine-treated animals in comparison to saline-treated animals (t(22) = 2.19, p = 0.048). A positive correlation between DA synthesis capacity in the striatum and the midbrain was also evident in the saline-treated animals (r2 = 0.59, p = 0.005) but was absent in ketamine-treated animals (r2 = 0.004, p = 0.83). CONCLUSIONS: Using this optimised method for quantifying 18F-DOPA uptake in the midbrain, we found that elevated striatal DA synthesis capacity in the sub-chronic ketamine model extends to the midbrain. Interestingly, the dysconnectivity between the midbrain and striatum seen in this model is also evident in the clinical population. This model may therefore be ideal for assessing novel compounds which are designed to modulate pre-synaptic DA synthesis capacity
Global Assessment of Extinction Risk to Populations of Sockeye Salmon Oncorhynchus nerka
BACKGROUND: Concern about the decline of wild salmon has attracted the attention of the International Union for the Conservation of Nature (IUCN). The IUCN applies quantitative criteria to assess risk of extinction and publishes its results on the Red List of Threatened Species. However, the focus is on the species level and thus may fail to show the risk to populations. The IUCN has adapted their criteria to apply to populations but there exist few examples of this type of assessment. We assessed the status of sockeye salmon Oncorhynchus nerka as a model for application of the IUCN population-level assessments and to provide the first global assessment of the status of an anadromous Pacific salmon. METHODS/PRINCIPAL FINDINGS: We found from demographic data that the sockeye salmon species is not presently at risk of extinction. We identified 98 independent populations with varying levels of risk within the species' range. Of these, 5 (5%) are already extinct. We analyzed the risk for 62 out of 93 extant populations (67%) and found that 17 of these (27%) are at risk of extinction. The greatest number and concentration of extinct and threatened populations is in the southern part of the North American range, primarily due to overfishing, freshwater habitat loss, dams, hatcheries, and changing ocean conditions. CONCLUSIONS/SIGNIFICANCE: Although sockeye salmon are not at risk at the species-level, about one-third of the populations that we analyzed are at risk or already extinct. Without an understanding of risk to biodiversity at the level of populations, the biodiversity loss in salmon would be greatly underrepresented on the Red List. We urge government, conservation organizations, scientists and the public to recognize this limitation of the Red List. We also urge recognition that about one-third of sockeye salmon global population diversity is at risk of extinction or already extinct
An Investigation into the Poor Survival of an Endangered Coho Salmon Population
To investigate reasons for the decline of an endangered population of coho salmon (O. kisutch), 190 smolts were acoustically tagged during three consecutive years and their movements and survival were estimated using the Pacific Ocean Shelf Tracking project (POST) array. Median travel times of the Thompson River coho salmon smolts to the lower Fraser River sub-array were 16, 12 and 10 days during 2004, 2005 and 2006, respectively. Few smolts were recorded on marine arrays. Freshwater survival rates of the tagged smolts during their downstream migration were 0.0–5.6% (0.0–9.0% s.e.) in 2004, 7.0% (6.2% s.e.) in 2005, and 50.9% (18.6% s.e.) in 2006. Overall smolt-to-adult return rates exhibited a similar pattern, which suggests that low freshwater survival rates of out-migrating smolts may be a primary reason for the poor conservation status of this endangered coho salmon population
Seeing Mathematics Through Different Eyes: An Equitable Approach to Use with Prospective Teachers
Teacher educators need to prepare prospective teachers by encouraging them to critically examine their current beliefs about the teaching and learning of mathematics while also providing opportunities for prospective teachers to develop an equity-centered orientation. Attending to these practices in teacher preparation programs may help prospective teachers observe actions that occur in classrooms and determine effective strategies that provide the opportunity to enhance all students’ access to high-quality mathematics instruction. As mathematics teacher educators, we must recognize what prospective teachers attend to as they direct their attention to various classroom events and how they relate the events to broader principles of teaching and learning. In this chapter, we investigate what prospective teachers attend to in a classroom vignette of a student who is above grade level in mathematics and exhibits disruptive behavior during instruction. Keeping everything constant in the vignette except the student’s race and sex, we examined prospective teachers’ responses when the student was an African American male, White male, African American female, and White female. By attending specifically to race and sex, we explored whether prospective teachers demonstrated (1) an equity-centered orientation toward mathematics instruction or (2) deficit views of students based on race, sex, or the intersection of the two. Using a constant comparative method, the data were coded and analyzed using the equity noticing framework. The results indicate that prospective teachers are beginning to attend to cultural influences and their responses reveal differences not only between races but also between males and female
Regulation of Ubx Expression by Epigenetic Enhancer Silencing in Response to Ubx Levels and Genetic Variation
For gene products that must be present in cells at defined concentrations, expression levels must be tightly controlled to ensure robustness against environmental, genetic, and developmental noise. By studying the regulation of the concentration-sensitive Drosophila melanogaster Hox gene Ultrabithorax (Ubx), we found that Ubx enhancer activities respond to both increases in Ubx levels and genetic background. Large, transient increases in Ubx levels are capable of silencing all enhancer input into Ubx transcription, resulting in the complete silencing of this gene. Small increases in Ubx levels, brought about by duplications of the Ubx locus, cause sporadic silencing of subsets of Ubx enhancers. Ubx enhancer silencing can also be induced by outcrossing laboratory stocks to D. melanogaster strains established from wild flies from around the world. These results suggest that enhancer activities are not rigidly determined, but instead are sensitive to genetic background. Together, these findings suggest that enhancer silencing may be used to maintain gene product levels within the correct range in response to natural genetic variation
- …