175 research outputs found

    Flip-angle based ratiometric approach for pulsed CEST-MRI pH imaging

    Get PDF
    Several molecules have been exploited for developing MRI pH sensors based on the chemical exchange saturation transfer (CEST) technique. A ratiometric approach, based on the saturation of two exchanging pools at the same saturation power, or by varying the saturation power levels on the same pool, is usually needed to rule out the concentration term from the pH measurement. However, all these methods have been demonstrated by using a continuous wave saturation scheme that limits its translation to clinical scanners. This study shows a new ratiometric CEST-MRI pH-mapping approach based on a pulsed CEST saturation scheme for a radiographic contrast agent (iodixanol) possessing a single chemical exchange site. This approach is based on the ratio of the CEST contrast effects at two different flip angles combinations (180°/360° and 180°/720°), keeping constant the mean irradiation RF power (Bavg power). The proposed ratiometric approach index is concentration independent and it showed good pH sensitivity and accuracy in the physiological range between 6.0 and 7.4

    Visualization of Directional Beaming of Weakly Localized Raman from a Random Network of Silicon Nanowires

    Get PDF
    Disordered optical media are an emerging class of materials that can strongly scatter light. These materials are useful to investigate light transport phenomena and for applications in imaging, sensing and energy storage. While coherent light can be generated using such materials, its directional emission is typically hampered by their strong scattering nature. Here, the authors directly image Rayleigh scattering, photoluminescence and weakly localized Raman light from a random network of silicon nanowires via real-space microscopy and Fourier imaging. Direct imaging enables us to gain insight on the light transport mechanisms in the random material, to visualize its weak localization length and to demonstrate out-of-plane beaming of the scattered coherent Raman light. The direct visualization of coherent light beaming in such random networks of silicon nanowires offers novel opportunities for fundamental studies of light propagation in disordered media. It also opens venues for the development of next generation optical devices based on disordered structures, such as sensors, light sources, and optical switches

    Beneficial Effects of Polydeoxyribonucleotide (PDRN) in an In Vitro Model of Fuchs Endothelial Corneal Dystrophy

    Get PDF
    Fuchs endothelial corneal dystrophy (FECD) is a bilateral, hereditary syndrome characterized by progressive irreversible injury in the corneal endothelium; it is the most frequent cause for corneal transplantation worldwide. Oxidative stress induces the apoptosis of corneal endothelial cells (CECs), and has a crucial function in FECD pathogenesis. The stimulation of the adenosine A2A receptor (A2Ar) inhibits oxidative stress, reduces inflammation and modulates apoptosis. Poly-deoxyribonucleotide (PDRN) is a registered drug that acts through adenosine A2Ar. Thus, the goal of this study was to assess the effect of PDRN in an in vitro FECD model. Human Corneal Endothelial Cells (IHCE) were challenged with H2O2 (200 µM) alone or in combination with PDRN (100 µg/mL), PDRN plus ZM241385 (1 µM) as an A2Ar antagonist, and CGS21680 (1 µM) as a well-known A2Ar agonist. H2O2 reduced the cells’ viability and increased the expression of the pro-inflammatory markers NF-κB, IL-6, IL-1β, and TNF-α; by contrast, it decreased the expression of the anti-inflammatory IL-10. Moreover, the pro-apoptotic genes Bax, Caspase-3 and Caspase-8 were concurrently upregulated with a decrease of Bcl-2 expression. PDRN and CGS21680 reverted the negative effects of H2O2. Co-incubation with ZM241385 abolished the effects of PDRN, indicating that A2Ar is involved in the mode of action of PDRN. These data suggest that PDRN defends IHCE cells against H2O2-induced damage, potentially as a result of its antioxidant, anti-inflammatory and antiapoptotic properties, suggesting that PDRN could be used as an FECD therapy

    Ultrathin silicon nanowires for optical and electrical nitrogen dioxide detection

    Get PDF
    The ever-stronger attention paid to enhancing safety in the workplace has led to novel sensor development and improvement. Despite the technological progress, nanostructured sensors are not being commercially transferred due to expensive and non-microelectronic compatible materials and processing approaches. In this paper, the realization of a cost-effective sensor based on ultrathin silicon nanowires (Si NWs) for the detection of nitrogen dioxide (NO2 ) is reported. A modification of the metal-assisted chemical etching method allows light-emitting silicon nanowires to be obtained through a fast, low-cost, and industrially compatible approach. NO2 is a well-known dangerous gas that, even with a small concentration of 3 ppm, represents a serious hazard for human health. We exploit the particular optical and electrical properties of these Si NWs to reveal low NO2 concentrations through their photoluminescence (PL) and resistance variations reaching 2 ppm of NO2 . Indeed, these Si NWs offer a fast response and reversibility with both electrical and optical transductions. Despite the macro contacts affecting the electrical transduction, the sensing performances are of high interest for further developments. These promising performances coupled with the scalable Si NW synthesis could unfold opportunities for smaller sized and better performing sensors reaching the market for environmental monitoring

    SiOx/SiNy multilayers for photovoltaic and photonic applications

    Get PDF
    Microstructural, electrical, and optical properties of undoped and Nd3+-doped SiOx/SiNy multilayers fabricated by reactive radio frequency magnetron co-sputtering have been investigated with regard to thermal treatment. This letter demonstrates the advantages of using SiNy as the alternating sublayer instead of SiO2. A high density of silicon nanoclusters of the order 1019 nc/cm3 is achieved in the SiOx sublayers. Enhanced conductivity, emission, and absorption are attained at low thermal budget, which are promising for photovoltaic applications. Furthermore, the enhancement of Nd3+ emission in these multilayers in comparison with the SiOx/SiO2 counterparts offers promising future photonic applications

    Directional control of weakly localized Raman from a random network of fractal nanowires

    Get PDF
    Disordered optical media are an emerging class of materials capable of strongly scattering light. Their study is relevant to investigate transport phenomena and for applications in imaging, sensing and energy storage. While such materials can be used to generate coherent light, their directional emission is typically hampered by their very multiple scattering nature. Here, we tune the out-of-plane directionality of coherent Raman light scattered by a fractal network of silicon nanowires. By visualizing Rayleigh scattering, photoluminescence and weakly localized Raman light from the random network of nanowires via real-space microscopy and Fourier imaging, we gain insight on the light transport mechanisms responsible for the material's inelastic coherent signal and for its directionality. The possibility of visualizing and manipulating directional coherent light in such networks of nanowires opens venues for fundamental studies of light propagation in disordered media as well as for the development of next generation optical devices based on disordered structures, inclusive of sensors, light sources and optical switches
    • …
    corecore