6 research outputs found

    Baryonic Effects on Lagrangian Clustering and Angular Momentum Reconstruction

    Get PDF
    Recent studies illustrate the correlation between the angular momenta of cosmic structures and their Lagrangian properties. However, only baryons are observable and it is unclear whether they reliably trace the cosmic angular momenta. We study the Lagrangian mass distribution, spin correlation, and predictability of dark matter, gas, and stellar components of galaxy-halo systems using IllustrisTNG, and show that the primordial segregations between components are typically small. Their protoshapes are also similar in terms of the statistics of moment of inertia tensors. Under the common gravitational potential they are expected to exert the same tidal torque and the strong spin correlations are not destroyed by the nonlinear evolution and complicated baryonic effects, as confirmed by the high-resolution hydrodynamic simulations. We further show that their late-time angular momenta traced by total gas, stars, or the central galaxies, can be reliably reconstructed by the initial perturbations. These results suggest that baryonic angular momenta can potentially be used in reconstructing the parameters and models related to the initial perturbations.Peer reviewe

    The effects of AGN feedback on the structural and dynamical properties of Milky Way-mass galaxies in cosmological simulations

    Get PDF
    Feedback from active galactic nuclei (AGNs) has become established as a fundamental process in the evolution of the most massive galaxies. Its impact on Milky Way (MW)-mass systems, however, remains comparatively unexplored. In this work, we use the auriga simulations to probe the impact of AGN feedback on the dynamical and structural properties of galaxies, focusing on the bar, bulge, and disc. We analyse three galaxies - two strongly and one unbarred/weakly barred - using three setups: (i) the fiducial auriga model, which includes both radio and quasar mode feedback, (ii) a setup with no radio mode, and (iii) one with neither the radio nor the quasar mode. When removing the radio mode, gas in the circumgalactic medium cools more efficiently and subsequently settles in an extended disc, with little effect on the inner disc. Contrary to previous studies, we find that although the removal of the quasar mode results in more massive central components, these are in the form of compact discs, rather than spheroidal bulges. Therefore, galaxies without quasar mode feedback are more baryon-dominated and thus prone to forming stronger and shorter bars, which reveals an anticorrelation between the ejective nature of AGN feedback and bar strength. Hence, we report that the effect of AGN feedback (i.e. ejective or preventive) can significantly alter the dynamical properties of MW-like galaxies. Therefore, the observed dynamical and structural properties of MW-mass galaxies can be used as additional constraints for calibrating the efficiency of AGN feedback models

    Cosmic Evolution Early Release Science (CEERS) survey: The colour evolution of galaxies in the distant Universe

    Full text link
    The wavelength-coverage and sensitivity of JWST now enables us to probe the rest-frame UV - optical spectral energy distributions (SEDs) of galaxies at high-redshift (z>4z>4). From these SEDs it is, in principle, through SED fitting possible to infer key physical properties, including stellar masses, star formation rates, and dust attenuation. These in turn can be compared with the predictions of galaxy formation simulations allowing us to validate and refine the incorporated physics. However, the inference of physical properties, particularly from photometry alone, can lead to large uncertainties and potential biases. Instead, it is now possible, and common, for simulations to be \emph{forward-modelled} to yield synthetic observations that can be compared directly to real observations. In this work, we measure the JWST broadband fluxes and colours of a robust sample of 5<z<105<z<10 galaxies using the Cosmic Evolution Early Release Science (CEERS) Survey. We then analyse predictions from a variety of models using the same methodology and compare the NIRCam/F277W magnitude distribution and NIRCam colours with observations. We find that the predicted and observed magnitude distributions are similar, at least at 5858 the distributions differ somewhat, though our observed sample size is small and thus susceptible to statistical fluctuations. Likewise, the predicted and observed colour evolution show broad agreement, at least at 5<z<85<z<8. There is however some disagreement between the observed and modelled strength of the strong line contribution. In particular all the models fails to reproduce the F410M-F444W colour at z>8z>8, though, again, the sample size is small here.Comment: 11 pages, 10 figures, submitted to MNRA

    The challenge of simulating the star cluster population of dwarf galaxies with resolved interstellar medium

    No full text
    We present results on the star cluster properties from a series of high resolution smoothed particles hydrodynamics (SPH) simulations of isolated dwarf galaxies as part of the griffin project. The simulations at sub-parsec spatial resolution and a minimum particle mass of 4 M⊙ incorporate non-equilibrium heating, cooling, and chemistry processes, and realize individual massive stars. The simulations follow feedback channels of massive stars that include the interstellar-radiation field variable in space and time, the radiation input by photo-ionization and supernova explosions. Varying the star formation efficiency per free-fall time in the range ϵff = 0.2–50 per cent neither changes the star formation rates nor the outflow rates. While the environmental densities at star formation change significantly with ϵff, the ambient densities of supernovae are independent of ϵff indicating a decoupling of the two processes. At low ϵff, gas is allowed to collapse more before star formation, resulting in more massive, and increasingly more bound star clusters are formed, which are typically not destroyed. With increasing ϵff, there is a trend for shallower cluster mass functions and the cluster formation efficiency Γ for young bound clusters decreases from 50 per cent to ∼1 per cent showing evidence for cluster disruption. However, none of our simulations form low mass (3 M⊙) clusters with structural properties in perfect agreement with observations. Traditional star formation models used in galaxy formation simulations based on local free-fall times might therefore be unable to capture star cluster properties without significant fine tuning

    Baryonic Effects on Lagrangian Clustering and Angular Momentum Reconstruction

    Get PDF
    Recent studies illustrate the correlation between the angular momenta of cosmic structures and their Lagrangian properties. However, only baryons are observable and it is unclear whether they reliably trace the cosmic angular momenta. We study the Lagrangian mass distribution, spin correlation, and predictability of dark matter, gas, and stellar components of galaxy-halo systems using IllustrisTNG, and show that the primordial segregations between components are typically small. Their protoshapes are also similar in terms of the statistics of moment of inertia tensors. Under the common gravitational potential they are expected to exert the same tidal torque and the strong spin correlations are not destroyed by the nonlinear evolution and complicated baryonic effects, as confirmed by the high-resolution hydrodynamic simulations. We further show that their late-time angular momenta traced by total gas, stars, or the central galaxies, can be reliably reconstructed by the initial perturbations. These results suggest that baryonic angular momenta can potentially be used in reconstructing the parameters and models related to the initial perturbations.Peer reviewe
    corecore